自 OpenAI 发布 GPT(Generative Pretrained Transformer)系列模型以来,人工智能领域经历了重大技术创新和变革。从 GPT-1 到最新的 GPT-4,模型架构的演变体现了深度学习、自然语言处理(NLP)和大规模预训练技术的不断进步。本文将深入分析 GPT 系列背后的技术创新与演进,探讨其架构、训练方法、性能提升和挑战。
1. GPT-1:开创预训练-微调框架
GPT 系列的开端是 GPT-1,它首次将 Transformer 架构与 预训练-微调 方法相结合。GPT-1 具有以下特点:
- Transformer 架构:基于 Vaswani 等人在 2017 年提出的 Transformer 模型,GPT-1 采用了自注意力(Self-Attention)机制,使其在处理长距离依赖时表现优异。
- 预训练-微调:GPT-1 首次将预训练与任务特定微调结合。模型首先在大规模文本数据上进行无监督预训练,然后通过少量标注数据进行微调,适应具体的下游任务。
- 单一任务:GPT-1 主要用于文本生成任务,在早期的实验中证明了预训练方法的有效性。
GPT-1 的成功为大规模预训练语言模型的研究奠定了基础,但其规模较小(1.1亿个参数)且在性能上有限制。</