随着工业4.0时代的到来,智能制造已成为制造业转型的核心动力之一。通过人工智能、大数据和物联网技术的结合,智能制造能够实现更加高效、灵活和智能的生产流程。在这些智能化过程中,多模态大模型的应用逐渐成为推动智能制造的关键技术之一。本文将通过分析某风电公司在其4000万级项目中的实践案例,深入探讨如何搭建AI平台、进行垂类模型训练以及适配复杂的工业场景,尤其是在应对百亿级项目时的技术难点与挑战。
1. 项目背景:风电行业的智能制造需求
随着全球对可再生能源的需求不断增加,风电产业正处于快速发展的阶段。风电设备的生产、安装、运维过程都面临着高度复杂性和高精度的要求。而随着智能制造的引入,风电设备生产厂商期望通过高效的生产调度、精准的设备监控、智能的故障预测等手段提升生产效率,降低生产成本,延长设备的使用寿命。
某风电公司作为领先的风电设备制造商,其4000万级智能制造项目旨在通过搭建基于多模态大模型的AI平台,实现对风电生产全流程的智能化改造。该项目涵盖了从生产线实时监控、质量检测、设备故障预测到物料流转等多个方面,涉及多个技术领域,尤其是在工业场景适配、数据处理和模型训练等方面面临巨大挑战。
2. AI平台搭建:技术架构与集成挑战
2.1 平台架构设计
为了实现智能制造的全面升级,AI平台的搭建需要覆盖多个层级,从数据采集、处理到模型训练、推理和反馈。风电公司的AI平台架构如下: