引言:YOLO 为什么值得入门目标检测?
目标检测(Object Detection)是计算机视觉中最具代表性的任务之一,广泛应用于视频监控、自动驾驶、智慧医疗、工业质检等领域。而在众多目标检测算法中,YOLO(You Only Look Once) 以其速度快、效果好、部署简便等优势成为工业界和学术界的首选方案之一。
本篇文章将带你从零开始,系统掌握 YOLO 的完整流程,包括:环境搭建 → 数据准备 → 模型训练 → 模型测试 → 推理部署,助你快速入门并应用目标检测技术。
一、准备工作:环境搭建与项目结构
1.1 安装Anaconda(推荐)
Anaconda 是深度学习开发的首选环境管理工具,推荐使用 Python 3.8 或 3.9 版本。
conda create -n yolov5_env python=3.8 -y
conda activate yolov5_env
1.2 克隆 YOLOv5 仓库
这里我们以 YOLOv5 为例,轻量高效,社区活跃。