零基础玩转YOLO目标检测:从数据标注到模型训练与预测全流程实战

引言:YOLO 为什么值得入门目标检测?

目标检测(Object Detection)是计算机视觉中最具代表性的任务之一,广泛应用于视频监控、自动驾驶、智慧医疗、工业质检等领域。而在众多目标检测算法中,YOLO(You Only Look Once) 以其速度快、效果好、部署简便等优势成为工业界和学术界的首选方案之一。

本篇文章将带你从零开始,系统掌握 YOLO 的完整流程,包括:环境搭建 → 数据准备 → 模型训练 → 模型测试 → 推理部署,助你快速入门并应用目标检测技术。


一、准备工作:环境搭建与项目结构

1.1 安装Anaconda(推荐)

Anaconda 是深度学习开发的首选环境管理工具,推荐使用 Python 3.8 或 3.9 版本。

conda create -n yolov5_env python=3.8 -y
conda activate yolov5_env

1.2 克隆 YOLOv5 仓库

这里我们以 YOLOv5 为例,轻量高效,社区活跃。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

威哥说编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值