DC Power Flow
参考文献
- handout_DC power flow and PTDF
- 李文沅. 电力系统安全经济运行-模型和方法[M]. 第1版. 重庆大学出版社, 1989.
交流潮流
下图为N端口网络,共有N+1个节点(0,1,2,…,N),其中节点0为参考节点。
假设各节点电压为
V
b
u
s
=
[
V
1
,
V
2
,
.
.
.
,
V
N
]
T
{V_{bus}} = {[{V_1},{V_2},...,{V_N}]^T}
Vbus=[V1,V2,...,VN]T,各节点注入电流为
I
b
u
s
=
[
I
1
,
I
2
,
.
.
.
,
I
N
]
T
{I_{bus}} = {[{I_1},{I_2},...,{I_N}]^T}
Ibus=[I1,I2,...,IN]T。用导纳矩阵形式表示的网络方程可写为:
I
b
u
s
=
Y
b
u
s
V
b
u
s
(1)
{I_{bus}} = {Y_{bus}}{V_{bus}} \tag{1}
Ibus=YbusVbus(1)
对于节点
i
i
i,式
(
1
)
(1)
(1)可写为:
I
i
=
∑
j
=
1
N
Y
i
j
V
j
(2)
{I_i} = \sum\limits_{j = 1}^N {{Y_{ij}}{V_j}} \tag{2}
Ii=j=1∑NYijVj(2)
对式 ( 2 ) (2) (2)两边取共轭,并左乘节点 i i i电压,可得:
S i = P i + j Q i = V i I i ∗ = V i ∑ j = 1 N Y i j ∗ V j ∗ (3) {S_i} = {P_i} + j{Q_i}= {V_i}I_i^* = {V_i}\sum\limits_{j = 1}^N {Y_{ij}^*V_j^*} \tag{3} Si=Pi+jQi=ViIi∗=Vij=1∑NYij∗Vj∗(3)
式 ( 3 ) (3) (3)即为N节点电力系统潮流方程的一般形式,亦称为直角坐标形式的潮流方程。
注意,此处的「N节点」是指除去地节点后系统包含的节点数。事实上,日常称呼的「6节点系统」、「39节点系统」中的节点数均是如此。和正文开篇的说法有所不同,但正文开篇的描述十分严谨,不会有理解上的问题。
将展开式
(
3
)
(3)
(3)为实部和虚部,可得:
其中 Y i j = G i j + j B i j {Y_{ij}} = {G_{ij}} + j{B_{ij}} Yij=Gij+jBij。
式 ( 4 ) (4) (4)进一步用极坐标形式表示,即极坐标形式的潮流方程:
注意,目前式子里出现的功率都还只是 P i P_i Pi,表示注入节点 i i i的功率,尚未涉及线路具体的潮流分布,即线路 i j ij ij流过的有功功率,下面就继续推导得到线路潮流 P i j P_{ij} Pij。
表示节点电压的 U U U和 V V V用串了,在本文中都是表示节点电压。
线路潮流的推导需要借助于下面这张图(用visio手画的,说实话觉得还挺好看),这张图真的很重要!!
由上图,有下列各式成立:
P i j + j Q i j = U ˙ i I ˙ i j ∗ = U ˙ i ( I ˙ i 0 ∗ + I ˙ i j ′ ∗ ) (6) {P_{ij}} + j{Q_{ij}} = {{\dot U}_i}\dot I_{ij}^* = {{\dot U}_i}\left( {\dot I_{i0}^* + \dot I_{ij}^{'*}} \right)\tag{6} Pij+jQij=U˙iI˙ij∗=U˙i(I˙i0∗+I˙ij′∗)(6)
电路理论知识:
联立式
(
6
、
7
、
8
)
(6、7、8)
(6、7、8)可得:
式
(
9
)
(9)
(9)即为线路潮流分布。在节点的情况(注入有功无功功率、电压幅值和相位)确定后,潮流分布是唯一确定的,所以潮流计算的直接目的是求取节点电气量(注入功率、电压幅值+相位),潮流分布是后续进一步计算得到的。
几点假设
直流潮流主要是进行有功潮流的分布计算,有以下几点假设:
- 支路电抗比支路电阻大得多,忽略支路电阻,即 G i j = 0 G_{ij}=0 Gij=0,故有如下式子成立
G + j B = j B = 1 R + j X = 1 j X = − j 1 X (10) G + jB = jB = {1 \over {R + jX}} = {1 \over {jX}} = - j{1 \over X} \tag{10} G+jB=jB=R+jX1=jX1=−jX1(10)
因此线路导纳为:
B
i
j
≈
−
1
x
i
j
(11)
{B_{ij}} \approx - {1 \over {{x_{ij}}}}\tag{11}
Bij≈−xij1(11)
- 支路两端电压相角差很小,故有
- 忽略所有对地支路,即 G i 0 + j B i 0 = 0 G_{i0}+jB_{i0}=0 Gi0+jBi0=0
- 各节点电压幅值相等,并等于标幺值1,即 ∣ U i ∣ = 1 \left| {{U_i}} \right|=1 ∣Ui∣=1
简化—>直流潮流
将式 ( 7 ) ( 8 ) (7)(8) (7)(8)代入式 ( 5 ) (5) (5)中的有功表达式,可得:
P i = ∑ j = 1 N ( B i j ( θ i − θ j ) ) = ∑ j = 1 , j ≠ i N B i j θ i − ∑ j = 1 , j ≠ i N B i j θ j = θ i ∑ j = 1 , j ≠ i N B i j − ∑ j = 1 , j ≠ i N B i j θ j (13) {P_i} = \sum\limits_{j = 1}^N {({B_{ij}}({\theta _i} - {\theta _j}))} = \sum\limits_{j = 1,j \ne i}^N {{B_{ij}}{\theta _i}} - \sum\limits_{j = 1,j \ne i}^N {{B_{ij}}{\theta _j}} = {\theta _i}\sum\limits_{j = 1,j \ne i}^N {{B_{ij}}} - \sum\limits_{j = 1,j \ne i}^N {{B_{ij}}{\theta _j}} \tag{13} Pi=j=1∑N(Bij(θi−θj))=j=1,j=i∑NBijθi−j=1,j=i∑NBijθj=θij=1,j=i∑NBij−j=1,j=i∑NBijθj(13)
上式可写为矩阵形式:
P
=
B
θ
(14)
P = B\theta \tag{14}
P=Bθ(14)
其中,
P
=
[
P
1
,
P
2
,
.
.
.
,
P
N
]
T
P = {[{P_1},{P_2},...,{P_N}]^T}
P=[P1,P2,...,PN]T,
θ
=
[
θ
1
,
θ
2
,
.
.
.
,
θ
N
]
T
\theta = {[{\theta _1},{\theta _2},...,{\theta _N}]^T}
θ=[θ1,θ2,...,θN]T,
B
B
B 矩阵是一个
N
∗
N
N*N
N∗N的矩阵,其中元素可表达如下:
注意这里的 B i j B_{ij} Bij指 B B B矩阵的元素,前文的 B i j B_{ij} Bij指线路 i j ij ij的电纳。本来我是想用 b i j b_{ij} bij表示线路电纳,但是看到很多参考书都是用大写字母,所以就没有换。
式 ( 15 ) (15) (15)中的第一、二行由式 ( 13 ) (13) (13)很容易得到,至于未直接相连节点之间的 B i j B_{ij} Bij为0,可以这么想:没有直接相连,可以认为 x i j = ∞ x_{ij}=\infty xij=∞,取倒数,自然为0。
直流潮流模型下,线路潮流 P i j P_{ij} Pij的表达式可通过将直流潮流的假设条件代入式 ( 9 ) (9) (9)得到:
P
i
j
=
−
B
i
j
θ
i
j
=
θ
i
j
x
i
j
=
θ
i
−
θ
j
x
i
j
(16)
{P_{ij}} = - {B_{ij}}{\theta _{ij}} = {{{\theta _{ij}}} \over {{x_{ij}}}} = {{{\theta _i} - {\theta _j}} \over {{x_{ij}}}} \tag{16}
Pij=−Bijθij=xijθij=xijθi−θj(16)
式
(
16
)
(16)
(16)就是优化模型中写了无数遍的直流潮流方程约束了。
理论上,直流潮流应该先利用式 ( 14 ) (14) (14)求得节点电压相角,然后利用式 ( 16 ) (16) (16)求得潮流分布。
但由于直流潮流只是一些简单的线性方程式,实际求解过程中,直接给出式 ( 16 ) (16) (16)形式的系列等式约束,然后丢给求解器求解即可。
小结
只是推导潮流方程的话本身并不是什么难事,网络方程一些,再搭配电路理论的基本等式就出来了。直流潮流不过是假设了一些条件,使得方程极大程度简化,并不是另辟蹊径的新东西。
还有就是直流潮流并未涉及无功功率,假定电压幅值都为1其实就已经忽略了无功了,因为电压水平是需要无功支撑的,这里默认电压幅值稳定在1,所以不考虑无功也是自然而然的。
潮流计算的重点其实在于计算,本文并未涉及这部分内容。当初学电分的时候,这部分也是颇难理解的章节之一,后续有必要采取同样的形式整理一篇笔记出来。
另外,最近越发觉得有必要自己动手编程实现一下潮流计算。编程语言的话,我觉得无论采取什么语言实现了第一遍,后面改用其他语言难度应该是不大的。
没想到这东西写起来这么费时,敲公式的确是个比较枯燥的过程,但是敲完然后贴到typora里面那一瞬的感觉还是颇为舒爽。
起初以为自己已经看懂的直流潮流,重新梳理一遍发现之前脑海中还是有些想当然的点,比如式 ( 16 ) (16) (16)的得出还是需要借助于交流潮流分布的表达式的。所以能够亲自整理的话的确能极大程度上加深理解。
吐槽
CSDN的公式兼容得不如typora呀!!typora上都正常显示了,到这里就error,所以好几个公式都是截图的~~