【R语言-P值校正(BH)】

1.需要校正p_value的原因

我粗浅的理解就是,因为样本量过大,即使是很小的一个p值(即出错的可能),也会有很多的假阳性出现,所以需要通过矫正来减小假阳性率。我就简单介绍其中一种:多重检验校正方法(BH法),在R里边,有一个自带的包stats中的p.adjust函数。

2.R中的实现

例子:

> # demo
> p <- c(0.03,0.051,0.016,0.123)
> p_adj <- round(p.adjust(p,"BH"),3)
> p_adj
[1] 0.060 0.068 0.060 0.123

计算方法:来源:资料1

3.参考资料

1.多重比较P值校正
2.p值校正小汇总(知乎)
里头有更详细的一些解释~~

问题:

样本量多大就需要矫正呢,根据什么来确定样本量是算大还是算小呢?争取日后搞懂呜呜呜。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值