R语言p值校正函数p.adjust

博客介绍了R语言中p值的调整方法,包括Bonferroni校正、Holm、Hochberg等方法。前四种方法控制家庭错误率,Hochberg和Hommel在假设独立或非负相关时有效。Benjamini等的“BH”和“BY”方法控制错误发现率,比其他方法更强大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

调整方法包括Bonferroni校正(“Bonferrroni”),其中p值乘以比较次数。Holm(1979)(“Holm”)、Hochberg(1988)(“霍奇伯格”)、霍梅尔(1988)、本杰米尼和霍奇伯格(1995)(“BH”或其别名“fdr”)、本贾米尼和耶库蒂利(2001)(“by”)也分别包含了较不保守的修正。还包括传递选项(“无”)。这组方法包含在p.adjust中。方法向量为需要将方法作为选项并将其传递给p.adjust的方法的利益。

前四种方法旨在对家庭错误率进行强有力的控制。似乎没有理由使用未修改的Bonferroni校正,因为它由Holm方法主导,在任意假设下也有效。

当假设检验独立或非负相关时,Hochberg和Hommel方法有效(Sarkar,1998;Sarkar和Chang,1997)。Hommel的方法比Hochberg的方法更强大,但差异通常很小,而且Hochberg-p值的计算速度更快。

Benjamini、Hochberg和Yekutieli的“BH”(又名“fdr”)和“BY”方法控制了错误发现率,即被拒绝的假设中错误发现的预期比例。错误发现率是比家族错误率更严格的条件,因此这些方法比其他方法更强大。

Description

Given a set of p-values, returns p-values adjusted using one of several methods.

Usage

p.adjust(p, method = p.adjust.methods, n = length(p))
page(p.adjust)
?p.adjust

p.adjust.methods
# [1] "holm"       "hochberg"   "hommel"     "bonferroni" "BH"        
# [6] "BY"         "fdr"        "none" 

comp_result_test$adjpval <- p.adjust(p = comp_result_test$pval, method = "fdr")

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值