一、数据集结构
1.multi-coil Knee MRI
训练集、验证集:给的全采样的K空间数据(kspace)、图像域的groun_truth
测试集、挑战赛:给的欠采样的K空间数据(kspace)、采样的Mask(mask)
2.single-coil Knee MRI
训练集、验证集:给的用全采样多线圈K空间数据模拟的单线圈K空间数据(kspace)、用RSS方法计算的ground_truth(reconstruction_rss)、用该模拟的单线圈kspace数据直接进行IFFT得到(reconstruction_esc)
测试集、挑战赛:给的欠采样的K空间数据(kspace)、采样的Mask(mask)
3.Brain MRI
训练集、验证集:给的全采样的K空间数据(kspace)、图像域的groun_truth
测试集、挑战赛:给的欠采样的K空间数据(kspace)、采样的Mask(mask)
4.DICOMS数据
在获取数据过程中原始数据未涉及的空间分辨率图像,被提供以表征更多种类的machine和设置。(是通过更多多样性的扫面仪、获取方式、重建方法和后处理算法得到的,作为训练的额外数据很有用)
5.其他补充
对于测试集和挑战赛的ground truth是没有给的:数据集论文说的是用于比较不同方法的结果,防止模型不会过拟合数据集。
之前一些非参加这个挑战赛的论文,是采用数据集进行训练,然后用验证集看模型效果的
二、数据处理要点
对于线圈灵敏度如果需要使用是要自己进行模拟的,数据集里没有给出,不过之前用的modl的小数据集是有直接给的
三、参考网站
数据集部分介绍和申请:
https://fastmri.med.nyu.edu/
数据集结构详细介绍:
https://www.jianshu.com/p/73f739924c57
数据集论文:
https://arxiv.org/pdf/1811.08839.pdf
挑战赛和参赛论文:
https://fastmri.org/