矩阵分析与应用+张贤达

1. 标量函数的共轭梯度公式

(1)若 f ( x ) = c f(x)=c f(x)=c为常数,则共轭梯度 ∂ c ∂ x ∗ = 0 \frac{\partial c}{\partial x^*}=0 xc=0
(2)线性法则:若 f ( x ) f(x) f(x) g ( x ) g(x) g(x)分别是向量 x x x的实值函数, c 1 c_1 c1 c 2 c_2 c2为复常数,则
∂ [ c 1 f ( x ) + c 2 g ( x ) ] ∂ x ∗ = c 1 ∂ f ( x ) ∂ x ∗ + c 2 ∂ g ( x ) ∂ x ∗ \frac{\partial [c_1f(x)+c_2g(x)]}{\partial x^*}=c_1\frac{\partial f(x)}{\partial x^*}+c_2\frac{\partial g(x)}{\partial x^*} x[c1f(x)+c2g(x)]=c1xf(x)+c2xg(x)
(3)乘积法则:

  • f ( x ) f(x) f(x) g ( x ) g(x) g(x)都是向量 x x x的实值函数,则
    ∂ f ( x ) g ( x ) ∂ x ∗ = g ( x ) ∂ f ( x ) ∂ x ∗ + f ( x ) ∂ g ( x ) ∂ x ∗ \frac{\partial f(x)g(x)}{\partial x^*}=g(x)\frac{\partial f(x)}{\partial x^*} + f(x)\frac{\partial g(x)}{\partial x^*} xf(x)g(x)=g(x)xf(x)+f(x)xg(x)
  • f ( x ) , g ( x ) f(x),g(x) f(x),g(x) h ( x ) h(x) h(x)都是向量 x x x的实值函数,则
    ∂ f ( x ) g ( x ) h ( x ) ∂ x ∗ = g ( x ) h ( x ) ∂ f ( x ) ∂ x ∗ + f ( x ) h ( x ) ∂ g ( x ) ∂ x ∗ + f ( x ) g ( x ) ∂ h ( x ) ∂ x ∗ \frac{\partial f(x)g(x)h(x)}{\partial x^*}=g(x)h(x)\frac{\partial f(x)}{\partial x^*}+ f(x)h(x)\frac{\partial g(x)}{\partial x^*}+f(x)g(x)\frac{\partial h(x)}{\partial x^*} xf(x)g(x)h(x)=g(x)h(x)xf(x)+f(x)h(x)xg(x)+f(x)g(x)xh(x)
    (4)商法则:若 g ( x ) ≠ 0 g(x)≠0 g(x)=0,则
    ∂ f ( x ) / g ( x ) ∂ x ∗ = 1 g 2 ( x ) [ g ( x ) ∂ f ( x ) ∂ x ∗ − f ( x ) ∂ g ( x ) ∂ x ∗ ] \frac{\partial f(x)/g(x)}{\partial x^*}=\frac{1}{g^2(x)}[g(x)\frac{\partial f(x)}{\partial x^*}-f(x)\frac{\partial g(x)}{\partial x^*}] xf(x)/g(x)=g2(x)1[g(x)xf(x)f(x)xg(x)]
    (5)链式法则:若 y ( x ) y(x) y(x) x x x的复向量值函数,则
    ∂ f ( y ( x ) ) ∂ x ∗ = ∂ [ y ( x ) ] T ∂ x ∗ ∂ f ( y ) ∂ y \frac{\partial f(y(x))}{\partial x^*}=\frac{\partial [y(x)]^T}{\partial x^*}\frac{\partial f(y)}{\partial y} xf(y(x))=x[y(x)]Tyf(y)
    式中, ∂ [ y ( x ) ] T ∂ x ∗ \frac{\partial [y(x)]^T}{\partial x^*} x[y(x)]T n × n n\times n n×n矩阵。
    (6)若 n × 1 n\times 1 n×1向量为 a a a x x x无关的常数向量,则
    ∂ a H x ∂ x ∗ = 0 , ∂ x H a ∂ x ∗ = a \frac{\partial a^Hx}{\partial x^*}=0, \frac{\partial x^Ha}{\partial x^*}=a xaHx=0,xxHa=a
    (7)令 A A A是一个与向量 x x x无关的矩阵,则
    ∂ x H A x ∂ x = A T x ∗ , ∂ x H A x ∂ x ∗ = A x \frac{\partial x^HAx}{\partial x}=A^Tx^*, \frac{\partial x^HAx}{\partial x^*}=Ax xxHAx=ATx,xxHAx=Ax
    ∂ x H A y ∂ A = x ∗ y T , ∂ x H A x ∂ A = x ∗ x T \frac{\partial x^HAy}{\partial A}=x^*y^T, \frac{\partial x^HAx}{\partial A}=x^*x^T AxHAy=xyT,AxHAx=xxT

2. 奇异值分解

矩阵 A A A的奇异值应该能够描述 A A A的奇异性质。
定理
A ∈ C m × n ( m > n ) A \in C^{m\times n}(m > n) ACm×n(m>n)的奇异值为
σ 1 ≥ σ 2 ≥ ⋅ ⋅ ⋅ ≥ σ n ≥ 0 \sigma_1 \ge \sigma_2 \ge ··· \ge \sigma_n \ge 0 σ1σ2⋅⋅⋅σn0

σ k = min ⁡ E ∈ C m × n ∣ ∣ E ∣ ∣ F : r a n k ( A + E ) ≠ k − 1 , k = 1 , 2 , ⋅ ⋅ ⋅ , n \sigma_k = \min_{E \in C^{m\times n}}{||E||_F : rank(A+E)\ne k-1},k=1,2,···,n σk=ECm×nmin∣∣EF:rank(A+E)=k1,k=1,2,⋅⋅⋅,n
并且存在一满足 ∣ ∣ E k ∣ ∣ F = σ k ||E_k||_F=\sigma_k ∣∣EkF=σk的误差矩阵 E E E使得
r a n k ( A + E k ) = k − 1 , k = 1 , 2 , ⋅ ⋅ ⋅ , n rank(A+E_k)=k-1,k=1,2,···,n rank(A+Ek)=k1,k=1,2,⋅⋅⋅,n
定义表明,奇异值与使得原矩阵 A A A的秩减小1的误差矩阵 E k E_k Ek的Frobenius范数相等。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值