122. 买卖股票的最佳时机 II

122. 买卖股票的最佳时机 II

//画图发现最终结果就是折线图的所有上升区间的首尾
//所以问题就变成了怎么找上升区间的首尾
//动态规划的解法:
//定义dp[i][0]表示第i天交易结束后没有持有股票的最大利润
//定义dp[i][1]表示第i天交易结束后手里持有股票的最大利润
//状态转移方程:
//dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
//今天没有股票,要么昨天就没有股票,要么昨天有股票,今天卖掉了,所以加上今天的股票价格
//dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
//今天有股票,要么昨天就有了,要么昨天没有,今天买入,所以减去今天的股票价格
//初始化的原则就是不能让状态转移方程中出现负数
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        //创建二维dp数组
        int dp[n][2];
        //初始化初始条件
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        for(int i=1; i<n; i++)
        {
            dp[i][0] = max(dp[i-1][0],dp[i-1][1]+prices[i]);
            dp[i][1] = max(dp[i-1][1],dp[i-1][0]-prices[i]);
        }
        //最后收益最大的肯定是卖出股票的
        return dp[n-1][0];
    }
};
//贪心思想:画折线图发现所有上升阶段的总和就是最大收益
//因此可以不用考虑中间过程开始极限操作,就认为只要明天的价格比今天的价格高,高出部分就是我的收益,虽然实际操盘不可能做到,但是贪心可以极限化
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int sum = 0;
        if(prices.size() < 1) return 0;
        for(int i = 0; i < prices.size()-1; i++)
        {
            if(prices[i] < prices[i+1])
            {
                sum += (prices[i+1] - prices[i]);
            }
        }
        return sum;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值