63. 不同路径 II

63. 不同路径 II

//先自己尝试一下,仍然是动态规划三步走
//1.定义dp二维数组的含义,dp[i][j]表示到达第i行第j列的总路径个数
//2.状态转移方程:if(obstacleGrid[i][j] == 1) dp[i][j] = 0;
//否则的话,dp[i][j] = dp[i-1][j] + dp[i][j-1]
//定义边界初始条件,初始条件的定义也要注意,第一行和第一列中一旦出现障碍物,其后的所有位置都为0,因此可以使用标志位表示
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        //定义dp二维数组
        vector<vector<int>> dp = vector<vector<int>>(m,vector<int>(n,0));
        //定义flag标志位,flag=1表示初始化的第一行或者第一列出现障碍物
        int flag = 0;
        for(int i = 0; i < m; i++)
        {
            if(flag == 1 || obstacleGrid[i][0] == 1)
            {
                flag = 1;
                dp[i][0] = 0;
            }
            else
            {
                dp[i][0] = 1;
            }
        }
        flag = 0;
        for(int j = 0; j < n; j++)
        {
            //这里初识化也是一样,一定要注意一旦发现有障碍物,该位置后面都无法到达,并且一定要让flag始终保持为1
            if(flag == 1 || obstacleGrid[0][j] == 1)
            {
                flag = 1;
                dp[0][j] = 0;
            }
            else
            {
                dp[0][j] = 1;
            }
        }
        //开始状态转移方程
        for(int i = 1; i < m; i++)
        {
            for(int j = 1; j < n; j++)
            {
                //相比于无障碍物的,增加了对每个位置的判断
                if(obstacleGrid[i][j] == 1)
                {
                    dp[i][j] = 0;
                }
                else
                {
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值