63. 不同路径 II
//先自己尝试一下,仍然是动态规划三步走
//1.定义dp二维数组的含义,dp[i][j]表示到达第i行第j列的总路径个数
//2.状态转移方程:if(obstacleGrid[i][j] == 1) dp[i][j] = 0;
//否则的话,dp[i][j] = dp[i-1][j] + dp[i][j-1]
//定义边界初始条件,初始条件的定义也要注意,第一行和第一列中一旦出现障碍物,其后的所有位置都为0,因此可以使用标志位表示
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
//定义dp二维数组
vector<vector<int>> dp = vector<vector<int>>(m,vector<int>(n,0));
//定义flag标志位,flag=1表示初始化的第一行或者第一列出现障碍物
int flag = 0;
for(int i = 0; i < m; i++)
{
if(flag == 1 || obstacleGrid[i][0] == 1)
{
flag = 1;
dp[i][0] = 0;
}
else
{
dp[i][0] = 1;
}
}
flag = 0;
for(int j = 0; j < n; j++)
{
//这里初识化也是一样,一定要注意一旦发现有障碍物,该位置后面都无法到达,并且一定要让flag始终保持为1
if(flag == 1 || obstacleGrid[0][j] == 1)
{
flag = 1;
dp[0][j] = 0;
}
else
{
dp[0][j] = 1;
}
}
//开始状态转移方程
for(int i = 1; i < m; i++)
{
for(int j = 1; j < n; j++)
{
//相比于无障碍物的,增加了对每个位置的判断
if(obstacleGrid[i][j] == 1)
{
dp[i][j] = 0;
}
else
{
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
};