mmdetection的Windows环境配置和使用(测试部分)--目标检测测试和分割测试

本文详细指导如何在Anaconda环境中配置MMDetection,包括创建虚拟环境、安装CUDA和cuDNN、安装PyTorch及其相关库,以及下载数据集和预训练权重,最后展示了模型预测和分割测试的过程。
摘要由CSDN通过智能技术生成

一、基础环境

打开Anaconda Prompt

1.创建新的虚拟环境:

备注:如果创建不了,请参考我的上一篇文章(其实就是资源下载通道的问题):http://t.csdnimg.cn/AoUTn

conda create -n mmdet python==3.7

激活mmdet环境:

conda acticate mmdet

2.安装 cudatoolkit和cudnn(分别运行):

conda install cudatoolkit==11.1.1
conda install cudnn==8.2.0.53

如果出现报错,比如 :

PackagesNotFoundError: The following packages are not available from current channels:

  - cudatoolkit==11.1.1

那么要么换源,要么去官网,我推荐直接去官网方便:anaconda搜索,界面如下:

然后进入你需要的版本,这里我使用的是第四个(按理来说前面几个都可以):

进去的界面:

任意复制其中的一句,一个不行就换另一句,去Anaconda Prompt

同样的安装cudnn(备注,我使用的是cudnn8.8.0.121,的第二条指令)。1.

3.然后安装torch:

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html

4.安装成功之后,下载mmdetection:

,github地址

二、配置mmdetection环境

1.添加刚创建的环境:

下载后打开mmdetection-main,

随便新建一个文件,运行:

import torch
 
print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available())

如上显示则表示基础环境创建成功。

2.安装依赖包:

pip install -U openmim -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install mmengine -i https://pypi.tuna.tsinghua.edu.cn/simple
mim install "mmcv>=2.0.0" -i https://pypi.tuna.tsinghua.edu.cn/simple

以及

pip install terminaltables -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pycocotools -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install shapely -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install cython -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install imagecorruptions -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install cityscapesscripts -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple

3.下载训练权重:

放在项目下的weights文件夹内,名字可以随便取,地址:https://github.com/open-mmlab/mmdetection/tree/main/configs/centernet

4.新建测试文件:

my_predect.py:内容如下:

import os
import cv2
import mmcv
from mmdet.registry import VISUALIZERS
from mmdet.apis import init_detector, inference_detector

# 指定模型的配置文件和 checkpoint 文件路径
config_file = 'configs/centernet/centernet_r18-dcnv2_8xb16-crop512-140e_coco.py'
checkpoint_file = 'weigthts/centernet_resnet18_dcnv2_140e_coco_20210702_155131-c8cd631f.pth'

model = init_detector(config_file, checkpoint_file, device='cuda:0')

visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.dataset_meta = model.dataset_meta


def detect_image(model, visualizer, img_path):
    img = mmcv.imread(img_path)
    result = inference_detector(model, img)

    img = mmcv.imconvert(img, 'bgr', 'rgb')
    visualizer.add_datasample(
        'result',
        img,
        data_sample=result,
        draw_gt=False,
        show=False)
    img_with_bbox = visualizer.get_image()

    save_path = img_path.replace('.jpg', '_result.jpg')
    cv2.imwrite(save_path, img_with_bbox[:, :, ::-1])


def detect_images_in_folder(model, visualizer, folder_path):
    image_paths = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.jpg')]
    for img_path in image_paths:
        detect_image(model, visualizer, img_path)


def main():
    # 图片预测
    folder_path = 'my_images/'
    detect_images_in_folder(model, visualizer, folder_path)


if __name__ == '__main__':
    main()

config_filed文件路径:configs->centernet->centernet_r18-dcnv2_8xb16-crop512-140e_coco.py
checkpoint_file路径就是之前下载的训练权重的路径,

三、下载数据集

可以参考:http://t.csdnimg.cn/w1VlW

或者直接下载2017val数据集:http://images.cocodataset.org/zips/val2017.zip

创建文件夹,放入图片(三四张就行,在my_predict.py文件中的folder_pat更改为你的路径)

 四、检测测试

直接运行my_predict.py,生成的结果会在你放图片的路径下,

五、分割测试

1.测试demo

import os
import cv2
import mmcv
from mmdet.registry import VISUALIZERS
from mmdet.apis import init_detector, inference_detector

# 指定模型的配置文件和 checkpoint 文件路径

#分割
config_file = 'configs/mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
checkpoint_file = 'weigthts/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth'


model = init_detector(config_file, checkpoint_file, device='cuda:0')

visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.dataset_meta = model.dataset_meta


def detect_image(model, visualizer, img_path):
    img = mmcv.imread(img_path)
    result = inference_detector(model, img)

    img = mmcv.imconvert(img, 'bgr', 'rgb')
    visualizer.add_datasample(
        'result',
        img,
        data_sample=result,
        draw_gt=False,
        show=False)
    img_with_bbox = visualizer.get_image()

    save_path = img_path.replace('.jpg', '_result.jpg')
    cv2.imwrite(save_path, img_with_bbox[:, :, ::-1])


def detect_images_in_folder(model, visualizer, folder_path):
    image_paths = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.jpg')]
    for img_path in image_paths:
        detect_image(model, visualizer, img_path)


def main():
    # 图片预测
    folder_path = 'my_images/'
    detect_images_in_folder(model, visualizer, folder_path)

    #分割
    folder_path = 'my_images/'
    detect_images_in_folder(model, visualizer, folder_path)


if __name__ == '__main__':
    main()

 2.下载训练权重

地址:https://github.com/open-mmlab/mmdetection/tree/main/configs/mask_rcnn

备注:我使用的是mask-rcnn,对于预训练模型选择你需要的,配置文件可以下载上方图片对应的连接,也可以去mmdetection项目下的configs->mask_rcnn下面对应的配置文件,比如我使用的上图所示的模型那么在mmdetection当中对应的是:

那么测试图片按照上面检测的图片,测试结果同样放在了同一个目录下:

图片 

参考:http://t.csdnimg.cn/wcqek

http://t.csdnimg.cn/t0pok

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值