二重积分
1,二重积分复杂抽象被积函数处理方法:(1):设出抽象函数的原函数,再通过原函数的函数特性(对称性,轮换对称等等)求解(2):切割被积区域,将被积区域额切割为多段特殊的区域(对于抽象函数而言,一般是利用对称性进行消除或者简化计算)。(3):与切割所对应的可以进行增补区域,同样是对于抽象函数较为易于处理的区域(最后需要减去增补的区域,与切割不同的是)。
2,重积分不等式证明一般方法:(1):非抽象函数:粗略的可以通过多元变量极值求得被积函数在所积区域的大略的上下限(黑塞矩阵的边界内极值,拉格朗日升元法的边界处极值)先一步进行 粗略的放缩,从而得到模糊的上下届(2):抽象函数:a:通过变上限函数来构造新函数,在通过导数和单调性来判断。b:柯西不等式(可以结合对称性等等)
3,二重积分非抽象复杂函数处理原则:优先妥协被积函数项,尽量减缓被积函数项,复杂被积区域。
三重积分
4,三重抽象函数处理方法:一般是重复的使用轮换对称性和交换积分次序。
5,在未设置坐标系的题中,要合理地设置坐标系和特殊点的关系尽量简化被积函数(不要给自己找麻烦)
第一类型曲线和曲面积分
6,第一曲面隐函数处理方法:所给的空间曲面无法将所需变量单独地用其他两个变量表示出来。此时可以使用隐函数求导方法。一般,题目会提供可以消除隐函数求导后果所带来的影响(约分项或者是固定值)。
基本:二重积分(直角坐标,极坐标),三重积分(直角坐标,柱面坐标,球面坐标)(先一后二,先二后一),对称性(轮换对称性和直接对称性)(适用于二重积分,三重积分,第一曲线和曲面积分),积分次序的交换(三重积分的次序的交换可以多次进行二重积分的交换从而间接得到),第一类型曲线和曲面积分的截面法,所对应的物理性质(几何度量,质量,重心,转动惯量,引力),雅各比行列式(积分的换元公式)