多元函数积分学

多元数量值函数积分

  • 多元数量值函数的积分: 设 ( Ω ) (\Omega) (Ω)表示一个有界的几何形体, 它是可度量的(即可求长或可求面积或可求体积), 函数 f f f是定义在 ( Ω ) (\Omega) (Ω)上的有界数量值函数.将 Ω \Omega Ω任意地划分为n个小部分 ( Δ Ω k ) , k = 1 , 2 , 3... , n (\Delta \Omega_k),k=1,2,3...,n (ΔΩk),k=1,2,3...,n Δ Ω k \Delta \Omega_k ΔΩk表示 ( Δ Ω k ) (\Delta \Omega_k) (ΔΩk)的度量.任取点 M k ∈ ( Δ Ω k ) M_k\in(\Delta \Omega_k) Mk(ΔΩk),作乘积 f ( M k ) Δ Ω k ,   k = 1 , 2 , 3 , . . . , n f(M_k)\Delta \Omega_k,\ k=1,2,3,...,n f(Mk)ΔΩk, k=1,2,3,...,n
    作和式 ∑ k = 1 n f ( M k ) Δ Ω k \sum_{k=1}^{n}f(M_k)\Delta \Omega _k k=1nf(Mk)ΔΩk
    若不论 ( Ω ) (\Omega) (Ω)如何划分, 点 M k M_k Mk ( Δ Ω k ) (\Delta\Omega_k) (ΔΩk)中如何选取, 当所有 ( Δ Ω k ) (\Delta\Omega_k) (ΔΩk)的直径的最大值 d → 0 d\to0 d0时, 上述和式都趋于同一常数, 那么称函数 f f f ( Ω ) (\Omega) (Ω)可积, 且称此常数为多元数量值函数 f f f ( Ω ) (\Omega) (Ω)上的积分, 记作 ∫ ( Ω ) f ( M ) d Ω = lim ⁡ d → 0 ∑ k = 1 n f ( M k ) Δ Ω k \int_{(\Omega)}f(M)d\Omega=\lim_{d\to 0}\sum_{k=1}^n f(M_k)\Delta \Omega_k (Ω)f(M)dΩ=d0limk=1nf(Mk)ΔΩk
    其中 ( Ω ) (\Omega) (Ω)称为积分域, f f f称为被积函数, f ( M ) d Ω f(M)d\Omega f(M)dΩ称为被积式积分微元.
  • 如果 Ω \Omega Ω x O y xOy xOy平面上的区域 ( σ ) (\sigma) (σ), 那么 f f f就是定义在 ( σ ) (\sigma) (σ)上的二元函数, Δ Ω k \Delta \Omega_k ΔΩk就是子区域的面积 Δ σ k \Delta\sigma_k Δσk, 从而积分式可以写成 ∫ ( Ω ) f ( M ) d Ω = lim ⁡ d → 0 ∑ k = 1 n f ( μ k , η k ) Δ σ k \int _{(\Omega)}f(M)d\Omega=\lim_{d\to 0}\sum_{k=1}^n f(\mu_k,\eta_k)\Delta \sigma_k (Ω)f(M)dΩ=d0limk=1nf(μk,ηk)Δσk称为 f f f在区域 ( σ ) (\sigma) (σ)上的二重积分, 其中 ( ξ k , η k ) (\xi_k,\eta_k) (ξk,ηk)就是点 M k M_k Mk的直角坐标. 为了明确显示二重积分有两个独立的积分变量, 我们常用两个积分符号把二重积分表示为 ∬ ( σ ) f ( x , y ) d σ = lim ⁡ d → 0 ∑ k = 1 n f ( μ k , η k ) Δ σ k \iint_{(\sigma)}f(x,y)d\sigma=\lim_{d\to 0}\sum_{k=1}^n f(\mu_k,\eta_k)\Delta \sigma_k (σ)f(x,y)dσ=d0limk=1nf(μk,ηk)Δσk
    其中 ( σ ) (\sigma) (σ)是二重积分的积分域, d σ d\sigma dσ称为面积微元
  • 如果 ( Ω ) (\Omega) (Ω)为一条平面(或空间)的曲线弧段 ( C ) (C) (C), 那么 f f f就是定义在弧段 ( C ) (C) (C)上的二元(或三元)函数, Δ Ω k \Delta \Omega_k ΔΩk就是子弧段的弧长 Δ s k \Delta s_k Δsk, 于是积分式可具体写成 ∫ ( C ) f ( x , y ) d s = lim ⁡ k = 1 n f ( ξ k , η k ) Δ s k \int_{(C)}f(x,y)ds=\lim_{k=1}^nf(\xi_k,\eta_k)\Delta s_k (C)f(x,y)ds=k=1limnf(ξk,ηk)Δsk
    称为 f f f在曲线段 ( C ) (C) (C)上对弧长的曲线积分, 也称第一型线积分
  • 如果 ( Ω ) (\Omega) (Ω)为三维空间的区域(V), 那么f就是定义在(V)上的三元函数, Δ Ω k \Delta \Omega_k ΔΩk就是子区域的体积 Δ V k \Delta V_k ΔVk. 通常使用三个积分符号来表示 ∭ ( V ) f ( x , y , z ) d V = lim ⁡ d → 0 ∑ k = 1 n f ( ξ k , η k , ζ k ) Δ V k \iiint_{(V)}f(x,y,z)dV=\lim_{d\to 0}\sum_{k=1}^n f(\xi_k,\eta_k,\zeta_k)\Delta V_k (V)f(x,y,z)dV=d0limk=1nf(ξk,ηk,ζk)ΔVk
    称为 f f f在区域 ( V ) (V) (V)上的三重积分, 其中 ( ξ k , η k , ζ k ) (\xi_k,\eta_k,\zeta_k) (ξk,ηk,ζk)为点 M k M_k Mk的直角坐标, ( V ) (V) (V)使三重积分的积分域, d V dV dV称为体积微元.

积分存在的条件和性质

  • 不论 ( Ω ) (\Omega) (Ω)如何划分, 点 M k M_k Mk ( Δ Ω k ) (\Delta\Omega_k) (ΔΩk)中如何选取, 当所有 ( Δ Ω k ) (\Delta\Omega_k) (ΔΩk)的直径的最大值 d → 0 d\to0 d0时, 上述和式都趋于同一常数, 那么称函数 f f f ( Ω ) (\Omega) (Ω)可积. 可以证明, 若 ( Ω ) (\Omega) (Ω)是有界笔记且可度量, f ∈ C ( ( Ω ) ) f\in C((\Omega)) fC((Ω)), 则 f f f ( Ω ) (\Omega) (Ω)上一定可积.
  • 线性性质
  • 对积分域的可加性
  • 积分不等式
  • 中值定理: 设 f ∈ C ( ( Ω ) ) , ( Ω ) f\in C((\Omega)),(\Omega) fC((Ω)),(Ω)为一有界连通闭集, 则在 ( Ω ) (\Omega) (Ω)上至少存在一点P, 使 ∫ ( Ω ) f ( M ) d Ω = f ( P ) Ω \int_{(\Omega)}f(M)d\Omega=f(P)\Omega (Ω)f(M)dΩ=f(P)Ω

直角坐标系二重积分的计算法

  • x型区域: 设 ( σ ) = { ( x , y )   ∣   a ≤ x ≤ b , y 1 ( x ) ≤ x ≤ y 2 ( x ) } (\sigma)=\{(x,y)\ |\ a\leq x\leq b,y_1(x)\leq x\leq y_2(x)\} (σ)={(x,y)  axb,y1(x)xy2(x)},

三重积分的计算

  • 球面坐标: 直角坐标到球面坐标的变换公式为 x = r sin ⁡ φ cos ⁡ θ y = r sin ⁡ φ sin ⁡ θ z = r cos ⁡ φ r ≥ 0 , 0 ≤ φ ≤ π , 0 ≤ θ ≤ 2 π x=r\sin \varphi \cos\theta\\ y=r\sin\varphi\sin \theta\\z=r\cos \varphi\\ r\geq0,0\leq\varphi\leq\pi,0\leq\theta\leq2\pi x=rsinφcosθy=rsinφsinθz=rcosφr0,0φπ,0θ2π
    体积微元是 ∂ ( x , y , z ) ∂ ( r , φ , θ ) = r 2 sin ⁡ φ d r d φ d θ \frac{\partial(x,y,z)}{\partial(r,\varphi,\theta)}=r^2\sin\varphi drd\varphi d\theta (r,φ,θ)(x,y,z)=r2sinφdrdφdθ
  • 例题:
    1. 求曲面 ( x 2 + y 2 + z 2 ) 2 = a 3 z ( a > 0 ) (x^2+y^2+z^2)^2=a^3z(a>0) (x2+y2+z2)2=a3z(a>0)所围立体体积.
    2. I = ∭ Ω 1 − x 2 a 2 − y 2 b 2 − z 2 c 2 d V , Ω : x 2 a 2 + y 2 b 2 + z 2 c 2 ≤ 1 I=\iiint_\Omega\sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}}dV, \Omega: \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq1 I=Ω1a2x2b2y2c2z2 dV,Ω:a2x2+b2y2+c2z21
      分析: 可利用球面坐标, 设 x = a r sin ⁡ φ cos ⁡ θ , y = b r sin ⁡ φ sin ⁡ θ , z = c r cos ⁡ φ x=ar\sin\varphi \cos\theta,y=br\sin\varphi\sin\theta, z=cr\cos\varphi x=arsinφcosθ,y=brsinφsinθ,z=crcosφ
    3. x = y − z 2 , 1 2 y = x , y = 1 x=\sqrt{y-z^2}, \frac{1}{2}\sqrt y=x, y=1 x=yz2 ,21y =x,y=1所围成的立体体积.
      分析: 要点在于如何切割和计算范围. 本题可以在 x = 1 / 2 x=1/2 x=1/2处切割, 恰好分为两个可计算的区域. 另外, 求变量范围时, 注意某坐标为应为定值时, 直接带入计算范围即可.在这里插入图片描述
    4. x 2 a 2 + y 2 b 2 + z 2 c 2 = − 1 , x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=-1, \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2+c2z2=1,a2x2+b2y2=1所围成的立体体积.
      分析: 利用柱面坐标, 只计算上半部分即可
    5. 计算 ∭ ( V ) ∣ x 2 + y 2 + z 2 − 1 ∣ d V , ( V ) \iiint_{(V)}|\sqrt{x^2+y^2+z^2}-1|dV, (V) (V)x2+y2+z2 1dV,(V) z = x 2 + y 2 , z = 1 z=\sqrt{x^2+y^2},z=1 z=x2+y2 ,z=1围成.
      分析: 讨论范围, 分为球内和球外, 分别计算范围即可
    6. 计算 ∭ ( V ) ( x + y + z ) 2 d V , ( V ) \iiint_{(V)}(x+y+z)^2dV, (V) (V)(x+y+z)2dV,(V)为椭球体 x 2 a 2 + y 2 b 2 + z 2 c 2 ≤ 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq1 a2x2+b2y2+c2z21.
      分析: 首先应去除积分为0的项, 在计算剩余项的积分, 用到椭圆面积公式.

含参变量的积分与反常重积分

  • 含参变量积分定义: 记 D = [ a , b ] × [ c , d ] D=[a,b]\times[c,d] D=[a,b]×[c,d]. 如果 f ∈ C ( D ) , f\in C(D), fC(D),那么对任一固定 y ∈ [ c , d ] y\in[c,d] y[c,d],积分 F ( y ) = ∫ a b f ( x , y ) d x F(y)=\int_a^b f(x,y)dx F(y)=abf(x,y)dx存在, 且将随y的变化而变化, 我们称上积分为含参变量y的积分, 它是参变量y的函数.
  • 连续性: 若 f ∈ C ( D ) f\in C(D) fC(D), 则 F ( y ) = ∫ a b f ( x , y ) d x F(y)=\int_a^b f(x,y)dx F(y)=abf(x,y)dx在区间 [ c , d ] [c,d] [c,d]连续.
  • 可导性: 若 f ∈ C ( D ) , f y ∈ C ( D ) f\in C(D),f_y\in C(D) fC(D),fyC(D), 则 F ( y ) = ∫ a b f ( x , y ) d x F(y)=\int_a^b f(x,y)dx F(y)=abf(x,y)dx [ c , d ] [c,d] [c,d]上有连续的导数, 且求导和积分可交换顺序. 即 F ′ ( y ) = d d y ∫ a b f ( x , y ) d x = ∫ a b ∂ f ( x , y ) ∂ y d x F'(y)=\frac{d}{dy}\int_a^b f(x,y)dx=\int_a^b \frac{\partial f(x,y)}{\partial y}dx F(y)=dydabf(x,y)dx=abyf(x,y)dx
  • 积分顺序交换性: 若 f ∈ C ( D ) , f\in C(D), fC(D), F ( y ) = ∫ a b f ( x , y ) d x 在 [ c , d ] 可 积 G ( x ) = ∫ c d f ( x , y ) d y 在 [ a , b ] 可 积 . F(y)=\int_a^bf(x,y)dx在[c,d]可积\\[2ex] G(x)=\int_c^df(x,y)dy在[a,b]可积. F(y)=abf(x,y)dx[c,d]G(x)=cdf(x,y)dy[a,b].
    ∫ c b ( ∫ a b f ( x , y ) d x ) d y = ∫ a b ( ∫ c d f ( x , y ) d y ) d x \int_c^b(\int_a^bf(x,y)dx)dy=\int_a^b(\int_c^df(x,y)dy)dx cb(abf(x,y)dx)dy=ab(cdf(x,y)dy)dx
  • f ( x , y ) ∈ C ( D ) . x i ( y ) ∈ C [ c , d ] , i = 1 , 2 f(x,y)\in C(D). x_i(y)\in C[c,d],i=1,2 f(x,y)C(D).xi(y)C[c,d],i=1,2,且其值域均为 [ a , b ] [a,b] [a,b].则 F ( y ) = ∫ x 1 ( y ) x 2 ( y ) f ( x , y ) d x F(y)=\int_{x_1(y)}^{x_2(y)}f(x,y)dx F(y)=x1(y)x2(y)f(x,y)dx必在 [ c , d ] [c,d] [c,d]上连续
  • f ( x , y ) , f y ( x , y ) f(x,y),f_y(x,y) f(x,y),fy(x,y)均在 D D D上连续, x 1 ( y ) , x 2 ( y ) x_1(y),x_2(y) x1(y),x2(y)的值域均为 [ a , b ] [a,b] [a,b], 且他们都在 [ c , d ] [c,d] [c,d]上可导, 则 F ( y ) = ∫ x 1 ( y ) x 2 ( y ) f ( x , y ) d x F(y)=\int_{x_1(y)}^{x_2(y)}f(x,y)dx F(y)=x1(y)x2(y)f(x,y)dx也在 [ c , d ] [c,d] [c,d]上可导. 且有 F ′ ( y ) = ∫ x 1 ( y ) x 2 ( y ) f y ( x , y ) d x + f [ x 2 ( y ) , y ] x 2 ′ ( y ) − f [ x 1 ( y ) , y ] x 1 ′ ( y ) . F'(y)=\int_{x_1(y)}^{x_2(y)}f_y(x,y)dx+f[x_2(y),y]x'_2(y)-f[x_1(y),y]x'_1(y). F(y)=x1(y)x2(y)fy(x,y)dx+f[x2(y),y]x2(y)f[x1(y),y]x1(y).
  • 例题:
    1. 计算积分 ∫ 0 1 x b − x a ln ⁡ x d x , ( a , b ) > 0 \int_0^1\frac{x^b-x^a}{\ln x}dx,(a,b)>0 01lnxxbxadx,(a,b)>0
      分析: 直接求积分不好求, 考虑化成二重积分. x y x^y xy对y的导数为 x y / ln ⁡ x x^y/\ln x xy/lnx, 原式可化为 ∫ 0 1 d x ∫ a b x y d y \int_0^1dx\int_a^bx^ydy 01dxabxydy,再交换积分顺序计算即可.
    2. 计算积分 I = ∫ 0 1 ln ⁡ ( 1 + x ) 1 + x 2 d x I=\int_0^1\frac{\ln{(1+x)}}{1+x^2}dx I=011+x2ln(1+x)dx.

第一型线积分与面积分

  • 第一型线积分: 曲线积分的值与积分路径( C )的方向无关, 我们把这种曲线积分称为对弧长的线积分, 也称第一型线积分.
  • 计算公式: 设有一有界简单光滑曲线©, 其参数方程为 x = x ( t ) , y = y ( t ) , z = z ( t ) . ( α ≤ t ≤ β ) x=x(t),y=y(t),z=z(t).(\alpha\leq t\leq \beta) x=x(t),y=y(t),z=z(t).(αtβ)
    若函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在C上连续, 则 ∫ ( C ) f ( x , y , z ) d s = ∫ α β f [ x ( t ) , y ( t ) , z ( t ) ] x ˙ 2 ( t ) + y ˙ 2 ( t ) + z ˙ 2 ( t ) d t \int_{ (C) }f(x,y,z)ds=\int_\alpha^\beta f[x(t),y(t),z(t)]\sqrt{\dot x^2(t)+\dot y^2(t)+\dot z^2(t)}dt (C)f(x,y,z)ds=αβf[x(t),y(t),z(t)]x˙2(t)+y˙2(t)+z˙2(t) dt

第二型线积分与面积分

第二型线积分:

  • 定义: 设L为xoy平面内从A到B的一条又向光滑弧, 在L上定义了一个向量函数 F ⃗ ( x , y ) = ( P ( x , y ) , Q ( x , y ) ) \vec F(x,y)=(P(x,y),Q(x,y)) F (x,y)=(P(x,y),Q(x,y)),若对L的任意分割和在局部弧段上取任意点, 极限 lim ⁡ λ → 0 ∑ k = 1 n [ P ( ξ k , η k ) Δ x + Q ( ξ k , η k ) Δ y ] = ∫ L P ( x , y ) d x + Q ( x , y ) d y \lim_{\lambda\to 0}\sum_{k=1}^n [P(\xi_k,\eta_k)\Delta x+Q(\xi_k,\eta_k)\Delta y]=\int_L P(x,y)dx +Q(x,y)dy λ0limk=1n[P(ξk,ηk)Δx+Q(ξk,ηk)Δy]=LP(x,y)dx+Q(x,y)dy都存在, 则称此极限为函数 F ⃗ ( x , y ) \vec F(x,y) F (x,y)在又向曲线弧L上对坐标的曲线积分, 或称第二类曲线积分. 其中 P ( x , y ) , Q ( x , y ) P(x,y),Q(x,y) P(x,y),Q(x,y)称为被积函数, L称为积分弧段或积分曲线.

第二型面积分

  • 定义: 设在向量场 A ( M ) \pmb A(M) AAA(M)中有一可求面积的有向曲面, 指定它的一侧. 把曲面任意划分成n小片 ( Δ S 1 ) , ( Δ S 2 ) . . . ( Δ S n ) (\Delta S_1),(\Delta S_2)...(\Delta S_n) (ΔS1),(ΔS2)...(ΔSn),任取一点 A ( M k ) ⋅ e n ( M k ) Δ S k   ( k = 1 , 2 , . . . n ) \pmb A(M_k)\cdot \pmb e_n(M_k)\Delta S_k \ (k=1,2,...n) AAA(Mk)eeen(Mk)ΔSk (k=1,2,...n)
    其中 e n \pmb e_n eeen为曲面在点 M k M_k Mk处指向给定测的单位法向量. Δ S k \Delta S_k ΔSk表示微元面积.
    作和式 ∑ k = 1 n A ( M k ) ⋅ e n ( M k ) Δ S k \sum_{k=1}^n\pmb A(M_k)\cdot\pmb e_n (M_k)\Delta S_k k=1nAAA(Mk)eeen(Mk)ΔSk
    如果不论曲面 S S S如何划分, 点 M k M_k Mk怎样选取, 当个小曲面直径最大值趋于零时上述和式都趋于同一常数, 则称此极限值为向量场 A ( M ) \pmb A(M) AAA(M)沿有向曲面(S)的第二型曲面积分, 简称第二型面积分, 记作 ∬ ( S ) A ( M ) ⋅ d S = lim ⁡ d → 0 ∑ k = 1 n A ( M k ) ⋅ e n ( M k ) Δ S k \iint_{(S)}\pmb A(M)\cdot \pmb{dS}=\lim_{d\to 0}\sum_{k=1}^n\pmb A(M_k)\cdot\pmb e_n (M_k)\Delta S_k (S)AAA(M)dSdSdS=d0limk=1nAAA(Mk)eeen(Mk)ΔSk
    其中 d S = e n d S \pmb{dS}=\pmb e_ndS dSdSdS=eeendS称为曲面面积微元向量.

Green公式

  • 单连通域: 若区域 σ \sigma σ内任意一条闭曲线的内部全部属于 σ \sigma σ, 或者说 σ \sigma σ内任意一闭曲线均可在 σ \sigma σ内连续变形缩小成 σ \sigma σ内的一点, 则称 σ \sigma σ是一单连通域, 否则称为复连通域.
  • 格林公式: 设平面内有界比区域 σ \sigma σ由一条分段光滑的简单闭曲线所围成, σ \sigma σ的边界即为 C C C, 函数 P , Q ∈ C ( 1 ) ( ( σ ) ) P,Q\in C^{(1)}((\sigma)) P,QC(1)((σ)),则下述公式成立
    ∬ ( σ ) ( ∂ Q ∂ x − ∂ P ∂ y ) d σ = ∮ ( + C ) P ( x , y ) d x + Q ( x , y ) d y \iint_{(\sigma)}(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})d\sigma=\oint_{(+C)}P(x,y)dx+Q(x,y)dy (σ)(xQyP)dσ=(+C)P(x,y)dx+Q(x,y)dy
  • 例题
    1. 计算 ∫ L ( x 2 + 3 y ) d x + ( y 2 − x ) d y \int_L(x^2+3y)dx+(y^2-x)dy L(x2+3y)dx+(y2x)dy, 其中L是上半圆周 y = 4 x − x 2 y=\sqrt{4x-x^2} y=4xx2 ( 0 , 0 ) (0,0) (0,0) ( 4 , 0 ) (4,0) (4,0).
      分析: 为使用格林公式, 可将半圆补全在减去.
    2. 计算 ∫ L x d y − y d x x 2 + y 2 \int_L\frac{xdy-ydx}{x^2+y^2} Lx2+y2xdyydx, 其中L是无重点且不过原点的分段光滑正向闭曲线.
      分析: 需讨论图形是否包含远点的情况. 当不包含原点时, 直接为0, 包含原点时, 应围绕远点作圆域, 令该圆域半径趋于0, 计算此时的第二型线积分, 直接用L正向积分减去半径趋于0的圆域积分得到闭区域的积计算得零, 再计算圆域积分.

平面曲线积分与路径无关的等价条件:

  • 定理: 设D为单连通区域, 函数P(x,y),Q(x,y)再D内具有一阶连续偏导数, 则以下四个条件等价:
  1. 沿D中任意光滑闭曲线, 有 ∮ L P d x + Q d y = 0 \oint_L Pdx+Qdy=0 LPdx+Qdy=0
  2. 对D中任一分段光滑曲线 L 1 L_1 L1曲线积分 ∫ L P d x + Q d y \int_LPdx+Qdy LPdx+Qdy与路径无关, 只与起止点有关.
  3. P d x + Q d y Pdx+Qdy Pdx+Qdy在D内有某一函数 u ( x , y ) u(x,y) u(x,y)的全微分, 即 d u ( x , y ) = P d x + Q d y du(x,y)=Pdx+Qdy du(x,y)=Pdx+Qdy
  4. 在D内每一点都有 ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值