复变函数论6-留数理论及其应用2-1-用留数定理计算实积分6:应用多值函数的积分

本文通过多个例子详细讲解了如何利用留数理论计算实积分,涉及多值函数的处理、柯西积分定理和留数定理的应用,通过解析分支和支割线的选择,解决复变函数在实轴上的积分问题。
摘要由CSDN通过智能技术生成

被积函数或辅助函数是多值解析函数的情形,一定要适当割开平面,使其能分出单值解析分支,才能应用柯西积分定理或柯西留数定理来求出给定的积分的值.

例 6.18
试计算积分

∫ 0 + ∞ ln ⁡ x ( 1 + x 2 ) 2   d x . \int_{0}^{+\infty} \cfrac{\ln x}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x . 0+(1+x2)2lnx dx.

解 以原点 O O O 为圆心, r r r R R R 为半径, 在 x x x 轴上方画两个半圆周, r r r可充分小, R R R 可充分大. 此两个半圆周与 x x x 轴上的 A B A B AB
B ′ A ′ B^{\prime} A^{\prime} BA 二线段构成一周线 C C C (如图 6.13).

辅助函数

f ( z ) = ln ⁡ z ( 1 + z 2 ) 2 f(z)=\cfrac{\ln z}{\left(1+z^{2}\right)^{2}} f(z)=(1+z2)2lnz

在这里插入图片描述
C C C 内部仅有一个二阶极点 z = i z=\mathrm{i} z=i, 而其支点 z = 0 z=0 z=0 z = ∞ z=\infty z= 已不属于 C C C 的内部. 故 f ( z ) f(z) f(z) C C C 所围的有界闭域上, 除 z = i z=\mathrm{i} z=i 外, 是单值解析的. 令

φ ( z ) = ( z − i ) 2 ln ⁡ z ( z + i ) 2 ( z − i ) 2 = ln ⁡ z ( z + i ) 2 , \varphi(z)=(z-\mathrm{i})^{2} \cfrac{\ln z}{(z+\mathrm{i})^{2}(z-\mathrm{i})^{2}}=\cfrac{\ln z}{(z+\mathrm{i})^{2}}, φ(z)=(zi)2(z+i)2(zi)2lnz=(z+i)2lnz,

φ ′ ( z ) = 1 z ⋅ 1 ( z + i ) 2 − 2 ( z + i ) 3 ln ⁡ z , Res ⁡ z = i f ( z ) = ( 6.5 ) φ ′ ( i ) = − 1 4 i − 2 − 8 i ⋅ π i 2 = π + 2 i 8 . \begin{array}{c} \varphi^{\prime}(z)=\cfrac{1}{z} \cdot \cfrac{1}{(z+\mathrm{i})^{2}}-\cfrac{2}{(z+\mathrm{i})^{3}} \ln z, \\ \operatorname{Res}_{z=\mathrm{i}} f(z) \stackrel{(6.5)}{=} \varphi^{\prime}(\mathrm{i})=-\cfrac{1}{4 \mathrm{i}}-\cfrac{2}{-8 \mathrm{i}} \cdot \cfrac{\pi \mathrm{i}}{2}=\cfrac{\pi+2 \mathrm{i}}{8} . \end{array} φ(z)=z1(z+i)21(z+i)32lnz,Resz=if(z)=(6.5)φ(i)=4i18i22πi=8π+2i.

由留数定理,

∫ B M B ′ ^ + ∫ B ′ A ′ + ∫ A N A ^ + ∫ A B = ∫ C ln ⁡ z ( 1 + z 2 ) 2   d z = 2 π i ⋅ π + 2 i 8 = − π 2 + π 2 4 i . ( 6.22 ) \begin{aligned} \int_{\widehat{B M B^{\prime}}}+\int_{B^{\prime} A^{\prime}}+\int_{\widehat{A N A}}+\int_{A B} & =\int_{C} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z \\ & =2 \pi \mathrm{i} \cdot \cfrac{\pi+2 \mathrm{i}}{8}=-\cfrac{\pi}{2}+\cfrac{\pi^{2}}{4} \mathrm{i} . \quad\quad(6.22) \end{aligned} BMB +BA+ANA +AB=C(1+z2)2lnz dz=2πi8π+2i=2π+4π2i.(6.22)

下面分别计算(6.22)左边各个积分:
(1) 因 lim ⁡ ∣ z ∣ → + ∞ z ln ⁡ z ( 1 + z 2 ) 2 = 0 \lim \limits_{|z| \rightarrow+\infty} z \cfrac{\ln z}{\left(1+z^{2}\right)^{2}}=0 z+limz(1+z2)2lnz=0,由引理6.1 即知

lim ⁡ R → + ∞ ∫ B M B ′ ^ ln ⁡ z ( 1 + z 2 ) 2   d z = 0. \lim \limits_{R \rightarrow+\infty} \int_{\widehat{B M B^{\prime}}} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z=0 . R+limBMB (1+z2)2lnz dz=0.

(2) 因 lim ⁡ z ∣ → 0 z ln ⁡ z ( 1 + z 2 ) 2 = 0 \lim \limits_{z \mid \rightarrow 0} z \cfrac{\ln z}{\left(1+z^{2}\right)^{2}}=0 z∣→0limz(1+z2)2lnz=0,故由引理 6.3 即知

lim ⁡ → → 0 ∫ A ′ N A ^ ln ⁡ z ( 1 + z 2 ) 2   d z = 0. \lim \limits_{\rightarrow \rightarrow 0} \int_{\widehat{A^{\prime} N A}} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z=0 . →→0limANA (1+z2)2lnz dz=0.

(3) 令 A B A B AB 上的 z = x e i ⋅ 0 ( x > 0 ) z=x \mathrm{e}^{i \cdot 0}(x>0) z=xei0(x>0), 则

lim ⁡ R → + ∞ ∫ A B ln ⁡ z ( 1 + z 2 ) 2   d z = ∫ 0 + ∞ ln ⁡ x ( 1 + x 2 ) 2   d x . \lim \limits_{R \rightarrow+\infty} \int_{A B} \cfrac{\ln z}{\left(1+z^{2}\right)^{2}} \mathrm{~d} z=\int_{0}^{+\infty} \cfrac{\ln x}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x . R+limAB(1+z2)2lnz dz=0+(1+x2)2lnx dx.

(4) B ′ A ′ B^{\prime} A^{\prime} BA 上的 z = x e i x ( x > 0 ) z=x \mathrm{e}^{\mathrm{ix}}(x>0) z=xeix(x>0),于是

ln ⁡ z = ln ⁡ x + i π , d z = e i π d x = − d x . \ln z=\ln x+\mathrm{i} \pi, \quad \mathrm{d} z=\mathrm{e}^{\mathrm{i} \pi} \mathrm{d} x=-\mathrm{d} x . lnz=lnx+iπ,dz=eiπdx=dx.

lim ⁡ x → + ∞ R → + ∞ ∫ B ′ A ′ ln ⁡ z ( 1 + z 2 ) 2   d z = ∫ + ∞ 0 ln ⁡ x + i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值