@【数据分析准备工作(二)】
数据分析师需掌握的三点
1、对业务的理解
2、工具的使用
3、表达能力
数据分析的四大步骤
数据抓取
数据处理
数据分析
数据可视化
数据分析师需掌握的三点
1、对业务的理解
电商业务:GMV,复购率,客单价,流量,转化率,折扣率…..
GMV:总的交易额,包括退货,没有支付成功的订单。
客单价:产品的平均价
流量:用户访问数量,流量一般指UV。UV指独立IP访问数量,PV在店铺的行为都会产生变化
转化率:产生的订单数/流量(建立在单一订单单一用户)
广告业务:单次点击竞价,点击率,有效访问率,广告预算
产品业务:PV,UV,日活/月活,用户留存,ARPU…
日活/月活:用户活跃的量,可能标准是登录,可能是浏览超过5秒
用户留存:用户有没有持续使用
ARPU:平均每个用户产生的金额利润
供应链业务:缺货率,安全库存,滞销率,备货量…
营销业务:市场占有率,ROI(投资回报率),头部市场/腰部市场/长尾市场..
2、工具的使用
软件工具使用:
Excel,python,SPSS,R
分析方法工具:
描述性分析,预测性分析,仿真分析….
描述性分析:
预测性分析:
线性分析:
非线性分析:
仿真分析:
数学模型工具:
分布模型,回归模型,分类模型….
3、表达能力:
数据描述表达:
口头表达,ppt工具表达,可视化表达(例如订单分布的帕累托分析)
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/2e7e90849af0456993267c87acd67d0e.png)
业务逻辑表达:
广告业务的曝光流量转化漏斗模型
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/9609e16fbd214723b55d0250ab388807.png)
业务决策表达:
第四象限,低成本高销售,第二象限最危险,可节流降低成本,或想办法提高销售量
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/61721fcc6e254f90b723a20e3dc75527.png)
数据分析的四大步骤
数据抓取
埋点
就是在应用中根据用户的行为收集一些信息,用来跟踪应用使用的状况,后续进一步优化产品或提供运营的数据支撑。
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/4371719c497d4fe6b95822e55edcd581.png)
爬虫
商品信息收集,做市场调研分析,用户在前端看到的都能抓取到。反爬虫有验证码,人脸识别
API
应用程序接口,预先定义的函数,在无需访问源码前提下,使应用程序的开发人员基于某软件或硬件访问到一组例程。若在前台爬虫不到数据,可用API接口获取后台数据
数据处理
缺失值分析(空值/遗漏值)
异常值分析(离群点分析)
一致性分析(矛盾/多数据源数据)
保持时间一致,数据库一致,收集节点一致,数据源一致
数据分析
对于以下A渠道,就例如刚开始打广告,效益很好,天天打个广告就免疫了,收益逐渐下降
对于B渠道,有门槛,例如说在央视打广告,收益不错,但过了时间段后,开始下降
假如你有一百万,怎么用运筹学投这两个渠道?用仿真法
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/056ca7cb51884221afd603ed73e6afd6.png)
预测分析法可用线性回归方法去分析未来业绩
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/f64e7623e01f4cdab932f07414c091b7.png)
数据可视化
利用表格,饼图,折线图,气泡图展示