相关定理

换句话说: x q n − x x^{q^n}-x xqn−x是所有次数为 n n n的因子的首1不可约多项式的乘积,每个不可约多项式有且仅有一次。


换句话说:对于次数不为 n n n的因子的多项式,若仍有 f ( x ) ∣ x q n − x f(x) | x^{q^n}-x f(x)∣xqn−x,则其必为可约多项式。
解题思路
方法1:
利用数学归纳法和特征幂的二项定理进行证明。通常此类题如果有
n
n
n的出现一般都要考虑数学归纳;其次,如果对于第二项有单一
x
x
x出现可能恰好是构成
x
q
n
−
x
x^{q^n}-x
xqn−x的一部分。
例题1:
例题2:
方法2:
考虑到非上述情况,如果可以直接找到一个因式,则其可约性直接得证。
例题:
方法3:
对于已经很明确的多项式,比如
f
(
x
)
=
x
5
+
x
3
+
1
f(x)=x^5+x^3+1
f(x)=x5+x3+1讨论其在
Z
2
Z_2
Z2上是否可约,则可直接利用下述定理解决。
参考资料
[1]. 《信安数学基础》,华中科技大学出版社