根据NVIDIA A6000(48GB显存)的硬件限制和全参数训练需求,以下是针对不同场景的推荐模型及详细方案:
推荐模型 1:GPT-Neo 1.3B
模型特性
- 参数量:13亿(1.3B)
- 架构:类GPT-3的解码器(Decoder-only)
- 开源支持:EleutherAI社区维护,兼容Hugging Face库
- 适用任务:文本生成、对话、代码生成
-
显存占用(优化后)
- 参数(FP16):1.3B × 2字节 ≈ 2.6GB
- 优化器(8-bit Adam):1.3B × 2字节 ≈ 2.6GB- 梯度(FP16):1.3B × 2字节 ≈ 2.6GB
- 激活值(梯度检查点):≈12GB
- 总显存占用:≈20GB(剩余显存支持Batch Size=8)
-
训练配置
yamlprecision: fp16optimizer: 8-bit Adambatch_size: 8sequence_length: 512gradient_checkpointing: truelearning_rate: 3e-4
-
优势
- 社区资源丰富:Hugging Face提供完整训练脚本和预训练权重。
- 训练速度:单卡A6000约 1.2 samples/sec,预计训练1周(10亿token)可达基础效果。
- 下游任务适配性:支持生成、问答、摘要等多种任务。