NVIDIA A6000(48GB显存)可以全参量训练什么开源模型?

根据NVIDIA A6000(48GB显存)的硬件限制和全参数训练需求,以下是针对不同场景的推荐模型及详细方案:

推荐模型 1:GPT-Neo 1.3B

模型特性
  • 参数量:13亿(1.3B)
  • 架构:类GPT-3的解码器(Decoder-only)
  • 开源支持:EleutherAI社区维护,兼容Hugging Face库
  • 适用任务:文本生成、对话、代码生成
  • 显存占用(优化后)
  • 参数(FP16):1.3B × 2字节 ≈ 2.6GB
  • 优化器(8-bit Adam):1.3B × 2字节 ≈ 2.6GB- 梯度(FP16):1.3B × 2字节 ≈ 2.6GB
  • 激活值(梯度检查点):≈12GB
  • 总显存占用:≈20GB(剩余显存支持Batch Size=8)
  • 训练配置
  • yamlprecision: fp16optimizer: 8-bit Adambatch_size: 8sequence_length: 512gradient_checkpointing: truelearning_rate: 3e-4
  • 优势
  • 社区资源丰富:Hugging Face提供完整训练脚本和预训练权重。
  • 训练速度:单卡A6000约 1.2 samples/sec,预计训练1周(10亿token)可达基础效果。
  • 下游任务适配性:支持生成、问答、摘要等多种任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值