【RCNN系列】Fast RCNN论文总结

目标检测论文总结

【RCNN系列】
RCNN
Fast RCNN
Faster RCNN



前言

一些经典论文的总结。


一、Pipeline

在这里插入图片描述
利用Selective Search(比较古老)算法取搜索Input image中可能有物体的区域(不同于RCNN不用保存本地磁盘)即region proposal。传入Input image,把整张图送进CNN得到feature map,此时将region proposa映射到feature map中,经过一个RoI pooling later后进行分类和框回归(同RCNN)。

将region proposa映射到feature map,这样就不用把每个region proposal都传入CNN了。这是Fast RCNN相比于RCNN的一个改进点。

二、模型设计

1.改进点

在这里插入图片描述
1.更高的mAP
2.训练是单阶段取消了SVM(注意区别one stage的检测器),使用了多任务损失
3.整个网络可以同步更新因为2
4.不需要保存本地磁盘

2.RoI pooling layer

RoI(region of interest)就是感兴趣区域也就是可能有物体的proposal。RoI是由一个长度为4的元组表示(r,c,h,w),(r,c)表示其左上角的坐标,(h,w)分别是高宽。

RoI pooling layer其实就是一个最大池化层。普通的池化是有步长的,但是RoI pooling是把任何一个feature map池化成固定大小H * W(比如 7*7)。原理就是将h*w 大小的RoI划分为7* 7个网格,那么每个网格的大小就是h/7 * w/7(出现小数取整)。

不管RoI原来是多大的特征图都会划分为一个7*7大小的网格,每个网格取出最大值跟最大池化层是一样的。这样就可以统一大小可以输入进后面的全连接层,不然2000多个RoI大小肯定是不一样的,如果不统一就无法输入进全连接层。
在这里插入图片描述

3.Backbone初始化

Fast RCNN的backbone是VGG,这里以VGG16为例。

1.把VGG16的最后一个池化层换成RoI pooling
2.把最后一层全连接层和softmax去掉换成两个兄弟层
3.网络的输入是input imgae和一系列的RoI

在这里插入图片描述

4.采样策略

Fast RCNN 的一个batch是每次输入N张图片,从每个图像中都采样R/N个RoI。比如,N=2,R=128,也就是说每次输入两张图片,然后从每张图片中采样68个RoI输入backbone。因为之前RCNN是从每张图片中采样一个RoI,也就是一个bactch是由128张图片个采样1个RoI组成,这样反向传播效率很低。

效率低的原因作者是这样解释的:
在这里插入图片描述
按照我理解:如果是128张图片各选一个RoI,那么就要同时计算和存储128个不同的Feature map,结合作者说的每个RoI都可能由很大的感受野,就导致每个batch的前向传播的输入会很大,所以反向传播效率低。而如果采取Fast RCNN的策略只需要N个Feature map,R/N 个RoI是共享Feature map的,每个RoI可以直接映射到Feature map上。

再来谈正负样本的选取,每次输入两张图片,然后从每张图片中采样68个RoI输入backbone。作者从与GT框的IoU大于0.5的RoI中抽取出25%(16个正样本),这些RoI被视为正样本即前景,而剩下的RoI从 IoU [0.1,0.5] 中挑选出最大的48个。IoU阈值的设定和RCNN其实是类似的

5.损失函数

在这里插入图片描述

6.其他小细节

1.作者也使用了多尺度训练方法,但是受GPU限制只能在小backbone上使用
2.因为Fast RCNN的全连接层很多,作者使用了奇异值分解来加速运算。


三、总结

Fast RCNN相较于RCNN的改进还是挺多的,backbone用了更深的VGG,loss用了多任务损失,pipeline也变简单了,最大的改进是得益于RoI pooling的设计(任意大小的RoI feature map可以进行最大池化),可以将region proposa映射到feature map,这样就不用把每个region proposal都传入CNN了。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值