【DETR】DETR训练VOC数据集/自己的数据集

该文详细介绍了如何训练DETR模型,包括将VOC或Yolo格式数据集转换为COCO格式,配置DETR参数,训练过程中的日志分析,以及如何进行模型推理。重点提到了数据转换中的注意事项,如取整问题和num_class设置,并解释了Encoder输入的维度变换原因。
摘要由CSDN通过智能技术生成

一、数据准备

DETR用的是COCO格式的数据集。
如果要用DETR训练自己的数据集,直接利用Labelimg标注成COCO格式。
1.如果是VOC数据集的话,要做一个格式转换。网上一大堆格式转换的代码都很乱,所以自己写了一个针对VOC数据集的转换。

更新:
2.针对yolo格式的数据集,转换成coco格式,可以参考我的github:yolo2coco


COCO数据集的格式类似这样,annotations文件夹里面有对应的train、val数据集的json文件。train2017则是训练集图片,其他同理。
在这里插入图片描述
VOC数据集的存放方式是这样的,转换格式就是找出Main文件夹下用于目标检测的图片。
在这里插入图片描述
Main文件夹下有train.txt文件,记录了训练集的图片。val.txt记录了验证集的图片
在这里插入图片描述
只需要修改注释中的两个路径即可(创建文件夹时没有加判断语句严谨一点应该加上)。

import os
import shutil
import sys
import json
import glob
import xml.etree.ElementTree as ET


START_BOUNDING_BOX_ID = 1
# PRE_DEFINE_CATEGORIES = None
# If necessary, pre-define category and its id
PRE_DEFINE_CATEGORIES = {"aeroplane": 1, "bicycle": 2, "bird": 3, "boat": 4,
                         "bottle": 5, "bus": 6, "car": 7, "cat": 8, "chair": 9,
                         "cow": 10, "diningtable": 11, "dog": 12, "horse": 13,
                         "motorbike": 14, "person": 15, "pottedplant": 16,
                         "sheep": 17, "sofa": 18, "train": 19, "tvmonitor": 20}


def get(root, name):
    vars = root.findall(name)
    return vars


def get_and_check(root, name, length):
    vars = root.findall(name)
    if len(vars) == 0:
        raise ValueError("Can not find %s in %s." % (name, root.tag))
    if length > 0 and len(vars) != length:
        raise ValueError(
            "The size of %s is supposed to be %d, but is %d."
            % (name, length, len(vars))
        )
    if length == 1:
        vars = vars[0]
    return vars


def get_filename_as_int(filename):
    try:
        filename = filename.replace("\\", "/")
        filename = os.path.splitext(os.path.basename(filename))[0]
        return int(filename)
    except:
        raise ValueError(
            "Filename %s is supposed to be an integer." % (filename))


def get_categories(xml_files):
    """Generate category name to id mapping from a list of xml files.

    Arguments:
        xml_files {list} -- A list of xml file paths.

    Returns:
        dict -- category name to id mapping.
    """
    classes_names = []
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall("object"):
            classes_names.append(member[0].text)
    classes_names = list(set(classes_names))
    classes_names.sort()
    return {name: i for i, name in enumerate(classes_names)}


def convert(xml_files, json_file):
    json_dict = {"images": [], "type": "instances",
                 "annotations": [], "categories": []}
    if PRE_DEFINE_CATEGORIES is not None:
        categories = PRE_DEFINE_CATEGORIES
    else:
        categories = get_categories(xml_files)
    bnd_id = START_BOUNDING_BOX_ID
    for xml_file in xml_files:
        tree = ET.parse(xml_file)
        root = tree.getroot()
        path = get(root, "path")
        if len(path) == 1:
            filename = os.path.basename(path[0].text)
        elif len(path) == 0:
            filename = get_and_check(root, "filename", 1).text
        else:
            raise ValueError("%d paths found in %s" % (len(path), xml_file))
        # The filename must be a number
        image_id = get_filename_as_int(filename)
        size = get_and_check(root, "size", 1)
        width = int(get_and_check(size, "width", 1).text)
        height = int(get_and_check(size, "height", 1).text)
        image = {
            "file_name": filename,
            "height": height,
            "width": width,
            "id": image_id,
        }
        json_dict["images"].append(image)
        # Currently we do not support segmentation.
        #  segmented = get_and_check(root, 'segmented', 1).text
        #  assert segmented == '0'
        for obj in get(root, "object"):
            category = get_and_check(obj, "name", 1).text
            if category not in categories:
                new_id = len(categories)
                categories[category] = new_id
            category_id = categories[category]
            bndbox = get_and_check(obj, "bndbox", 1)
            xmin = int(get_and_check(bndbox, "xmin", 1).text) - 1
            ymin = int(get_and_check(bndbox, "ymin", 1).text) - 1
            xmax = int(get_and_check(bndbox, "xmax", 1).text)
            ymax = int(get_and_check(bndbox, "ymax", 1).text)
            assert xmax > xmin
            assert ymax > ymin
            o_width = abs(xmax - xmin)
            o_height = abs(ymax - ymin)
            ann = {
                "area": o_width * o_height,
                "iscrowd": 0,
                "image_id": image_id,
                "bbox": [xmin, ymin, o_width, o_height],
                "category_id": category_id,
                "id": bnd_id,
                "ignore": 0,
                "segmentation": [],
            }
            json_dict["annotations"].append(ann)
            bnd_id = bnd_id + 1

    for cate, cid in categories.items():
        cat = {"supercategory": "none", "id": cid, "name": cate}
        json_dict["categories"].append(cat)

    os.makedirs(os.path.dirname(json_file), exist_ok=True)
    json_fp = open(json_file, "w")
    json_str = json.dumps(json_dict)
    json_fp.write(json_str)
    json_fp.close()


if __name__ == "__main__":
    #  只需修改以下两个路径
    #  VOC数据集根目录
    voc_path = "VOC2012"
    
    #  保存coco格式数据集根目录
    save_coco_path = "VOC2COCO"
    
    #  VOC只分了训练集和验证集即train.txt和val.txt
    data_type_list = ["train", "val"]
    for data_type in data_type_list:
        os.makedirs(os.path.join(save_coco_path, data_type+"2017"))
        os.makedirs(os.path.join(save_coco_path, data_type+"_xml"))
        with open(os.path.join(voc_path, "ImageSets\Main", data_type+".txt"), "r") as f:
            txt_ls = f.readlines()
        txt_ls = [i.strip() for i in txt_ls]
        for i in os.listdir(os.path.join(voc_path, "JPEGImages")):
            if os.path.splitext(i)[0] in txt_ls:
                shutil.copy(os.path.join(voc_path, "JPEGImages", i),
                            os.path.join(save_coco_path, data_type+"2017", i))
                shutil.copy(os.path.join(voc_path, "Annotations", i[:-4]+".xml"), os.path.join(
                    save_coco_path, data_type+"_xml", i[:-4]+".xml"))
        xml_path = os.path.join(save_coco_path, data_type+"_xml")
        xml_files = glob.glob(os.path.join(xml_path, "*.xml"))
        convert(xml_files, os.path.join(save_coco_path,
                "annotations", "instances_"+data_type+"2017.json"))
        shutil.rmtree(xml_path)


结果如图所示,在voc2coco文件夹下有三个文件:
在这里插入图片描述

二、配置DETR

推荐使用命令行传递参数,这里修改main.py只是为了说明参数的意义。
例如:
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --coco_path /path/to/coco --output_dir ./output

对于argparse命令行参数的传递有问题可以参考我的另一篇文章:argparse — 命令行选项、参数和子命令解析器详解

修改main.py文件中的参数、超参数:
在这里插入图片描述
这个最好不改,就设为coco。去修改models/detr.py 文件的num_classes(大概在三百多行)。这里作者也解释了num_classes其实并不是类别数,因为coco只有80类,因为coco的id是不连续的,coco数据集最大的ID是90,所以原论文时写的MAX ID +1 即91。对于我们自定义的和转化的VOC数据集num_classes就是类别数。
在这里插入图片描述


在这里插入图片描述
coco_path改成自己的coco路径。
在这里插入图片描述
其中预训练权重需要修改一下,coco是80类,不能直接加载官方的模型。voc是20类。把num_classes改成21。传入得到的detr_r50_21.pth新的权重文件。

import torch
pretrained_weights=torch.load('detr-r50-e632da11.pth')
num_classes=21
pretrained_weights["model"]["class_embed.weight"].resize_(num_classes+1,256)
pretrained_weights["model"]["class_embed.bias"].resize_(num_classes+1)
torch.save(pretrained_weights,"detr_r50_%d.pth"%num_classes)

运行日志(特别难训练):
在这里插入图片描述

三、绘图

在util文件夹下有plot_utils.py文件,可以绘制损失和mAP曲线。
在这里插入图片描述
在plot_utils.py文件中加入代码运行即可:

if __name__ == "__main__":
	# 路径更换为保存输出的eval路径
	# mAP曲线
    files=list(Path("./outputs/eval").glob("*.pth"))
    plot_precision_recall(files)
    plt.show()
    # 路径更换为保存输出的路径
    # 损失曲线
    plot_logs(Path("./output"))
    plt.show()

四、推理

训练完毕后我们会得到一个checkpoint.pth的文件,可以用自己训练得到的模型来推理图片,代码如下:

import numpy as np
from models.detr import build
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as transforms

torch.set_grad_enabled(False)
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
          [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
transform_input = transforms.Compose([transforms.Resize(800),
                                      transforms.ToTensor(),
                                      transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])


def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)


def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32, device="cuda")
    return b


def plot_results(pil_img, prob, boxes, img_save_path):
    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
                                   fill=False, color=c, linewidth=3))
        cl = p.argmax()
        text = f'{CLASSES[cl]}:      {p[cl]:0.2f}'
        ax.text(xmin, ymin, text, fontsize=9,
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.savefig(img_save_path)
    plt.axis('off')
    plt.show()


def main(chenkpoint_path, img_path, img_save_path):
    args = torch.load(chenkpoint_path)['args']
    model = build(args)[0]
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    # 加载模型参数
    model_data = torch.load(chenkpoint_path)['model']
    model.load_state_dict(model_data)

    model.eval()
    img = Image.open(img_path).convert('RGB')
    size = img.size
    
    inputs = transform_input(img).unsqueeze(0)
    outputs = model(inputs.to(device))
    # 这类最后[0, :, :-1]索引其实是把背景类筛选掉了
    probs = outputs['pred_logits'].softmax(-1)[0, :, :-1]
    # 可修改阈值,只输出概率大于0.7的物体
    keep = probs.max(-1).values > 0.7
    bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], size)
    # 保存输出结果
    ori_img = np.array(img)
    plot_results(ori_img, probs[keep], bboxes_scaled, img_save_path)


if __name__ == "__main__":
    CLASSES = ['N/A', "aeroplane", "bicycle", "bird", "boat",
               "bottle", "bus", "car", "cat", "chair",
               "cow", "diningtable", "dog", "horse",
               "motorbike", "person", "pottedplant",
               "sheep", "sofa", "train", "tvmonitor", "background"]
    main(chenkpoint_path="checkpoint.pth", img_path="test.png",
         img_save_path="result2.png")

几点说明:
1.CLASSES是我们数据集对应的类别名,注意自己标注的顺序一定写对。第一个类别是"N/A"既不是背景也不是前景,因为我们转换的数据集的索引是从1开始的,所以索引为0的类别就缺失了。背景类应该是索引最大的也就是第21类。其实上面的"background"我认为加上才是最严谨的。

在这里插入图片描述

2.chenkpoint_path:保存的权重文件
img_path:测试的图片路径
img_save_path:保存结果路径

3.可修改阈值,论文中默认只输出概率大于0.7的物体。


用VOC数据集训练的模型推理效果:
(VOC数据集中没有自行车一类所以识别不出来)
在这里插入图片描述

五、一些小bug

1.取整问题

UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the ‘trunc’ function NOT ‘floor’). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode=‘trunc’), or for actual floor division, use torch.div(a, b, rounding_mode=‘floor’).在这里插入图片描述
这时一个torch版本原因导致的一个函数问题,报了一个警告。
将models/position_encoding.py文件中的第44行改成如下形式即可。
在这里插入图片描述

2.num_class的设置问题

num_class的设置问题在github上有详细的讨论:num_class如何设置
引用作者原话:
在这里插入图片描述
num_class应该设置为max_id+1,比如上面的voc2coco数据集,索引从1到20,那么num_class应该设置为20+1=21,索引为21的类为背景类,但是因为索引从1开始,所以把索引为0 的类设置为N/A,既不是背景也不是前景,应该是缺失类。作者举例4个类别IDs分别为1,23,24,56那么num_class应该设置为57,索引为57的类为背景类。其中缺失索引值:0、2-22、25-55应该用N/A填充,都是缺失类。

3.Encoder的输入为什么要把特征图的维度进行变换 (bs, c, hw) -> (hw, bs, c)?

在这里插入图片描述

这里只是一个小细节,当初发现这里和ViT等论文的Encoder输入不太一样,不明白为什么要多此一举进行维度变换。这里其实是pytorch中注意力实现的一个不同,在源码中的文档中写的很清楚,pytorch中的transformer实现有一个batch_first=False的参数,也就是默认传入的第一个维度不是batch_size,所以才要进行一个维度变换。

在这里插入图片描述

References

VOC2COCO代码参考Github
DETR预训练模型

评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值