【YOLO系列】YOLO V5模型详解

前言

        以下内容仅为个人在学习人工智能中所记录的笔记,先将目标识别算法yolo系列的整理出来分享给大家,供大家学习参考。

        本文未对论文逐句逐段翻译,而是阅读全文后,总结出的YOLO V5的思路与实现路径。

        若文中内容有误,希望大家批评指正。


资料下载

        项目地址:YOLO V5_v6

回顾:

        YOLO V1:【YOLO系列】YOLO V1论文思想详解

        YOLO V2:【YOLO系列】YOLO V2论文思想详解

        YOLO V3:【YOLO系列】 YOLOv3论文思想详解

        YOLO V4:【YOLO系列】 YOLOv4论文思想详解


        YOLO V5是是Glenn Jocher等人研发,它是Ultralytics公司的开源项目,没有相关论文。


        YOLOv5根据参数量分为了YOLOv5n(Nano)、YOLOv5s(Small)、YOLOv5m(Medium)、YOLOv5l(Large)和 YOLOv5x(Extra Large)五种类型,其参数量依次上升,当然了其效果也是越来越好。从2020年6月发布至2022年11月已经更新了7个大版本,在v7版本中还添加了语义分割的功能。

        本文以YOLOv5_v6为媒介,对YOLOv5进行学习。

        YOLO V5的5个pt文件的参数如下所示:

YOLOv5n summary: 213 layers, 1867405 parameters, 0 gradients, 4.5 GFLOPs

YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs

YOLOv5m summary: 290 layers, 21172173 parameters, 0 gradients, 48.9 GFLOPs

YOLOv5l summary: 367 layers, 46533693 parameters, 0 gradients, 109.0 GFLOPs

YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients, 205.5 GFLOPs


一、YOLO V5_v6思想

        1、在训练阶段,YOLO V5使用Mosaic数据增强来提升模型的训练速度和网络精度,自适应锚框计算(YOLO V2提出,详情可看:【YOLO系列】YOLO V2论文思想详解【YOLO系列】 速看!YOLOv3中如何使用K-Means聚类算法生成Anchor Box)。

        2、在Backbone网络中,YOLO V5改进了YOLO V4的CSPDarkNet53网络,使用SiLu激活函数代替了YOLO V4中的Mish激活函数。

        3、在Neck网络中,YOLO V5使用SPPF替代了YOLO V4中的SPP模块来融合不同尺度大小的特征图。同时,利用自底向上的PAN特征金字塔提升网络的特征提取能力。

        4、YOLO V5的Head依然和YOLO V4一样使用了YOLO V3的head并没有做特别的改进。

        5、模型在训练前,先进行了Warmup热身,然后在采用了CosineAnnealingLR学习率下降的策略,让学习率随epoch的变化图类似于cos变化。


二、YOLO V5_v6模型结构

        YOLO V5现在已经更新到v7,但是每个版本的核心架构都是大差不差的。

        在v1~v4的版本,YOLOV5的Backbone几乎没有变化,最多是每个卷积后激活函数变了,并且都只是用了两次upsample来输入特征图来做detect;

        从v5开始,模型neck的深度变大了,也就是做了三次upsample来输出特征图做最后的预测;

        到v6,模型删除foucs,将SPP替换成了SPPF

        v7版本又加上了语义分割的功能,其余的变化并不大。

        接下来我把v1~v6版本的模型结构都给出来,供大家参考,每个版本均有yolov5s为基础。

1、YOLO V5粗略图

        (1)v1~v4

        (2)v5~v6

2、YOLO V5详细图

        (1)v3

        v2和v1就是把下图中CONV模块中的激活函数换成LeakyReLU即可

        (2)v4

        (3)v5

        (4)v6


关注公众号,获取200+本Python、人工智能相关学习资料

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值