响应的分类和求法

响应的分类和求解方法

一.初始值和初始状态

初始值: t = 0 + t=0_+ t=0+时的响应的值,即 y ( 0 + ) y(0_+) y(0+)

初始状态: t = 0 − t=0_- t=0时的响应的值,即 y ( 0 − ) y(0_-) y(0)

二者的关系:初始值是我们解微分方程所需要带入的值,我们通过初始状态求解得出初始值。

二.微分方程的求解方法

①微分方程的全解为:齐次解+特解

②齐次解的求解方法:根据特征方程求出特征根,进而求出齐次解。

③特解的求解方法:根据激励函数的形式设特解并带入特征方程。

全解得到以后带入初始值,求系数,则求解完成。

部分特解和齐次解的常用函数形式如下表

在这里插入图片描述
在这里插入图片描述

三.分类

1.零输入响应和零状态响应

零输入响应:

①定义:输入为零时,系统的响应,即仅由系统初始状态所引起的响应。

②初始值: y z i ( i ) ( 0 + ) = y z i ( i ) ( 0 − ) = y ( i ) ( 0 − ) y^{(i)}_{zi}(0_+) = y^{(i)}_{zi}(0_-) = y^{(i)}(0_-) yzi(i)(0+)=yzi(i)(0)=y(i)(0),其中最后一项一般是题中给出的条件。该式子还说明了零输入响应不会在零时刻发生跃变。

③解法:1.解出齐次解 2.带入初始值

④解的形式:零输入响应 = 齐次解1

零状态响应

①定义:系统初始状态为0时,系统的响应,即仅由输入产生的响应

②初始值:

1.方程右边不含 δ \delta δ函数时: y z s ( i ) = 0 y_{zs}^{(i)} = 0 yzs(i)=0

2.方程右边含 δ \delta δ函数时:用系数匹配法求解

注:系数匹配法简单来说就是在方程两边进行积分,积分限为 ( 0 − , 0 + ) (0_-,0_+) (0,0+)。结论为:仅在 y ( t ) y(t) y(t)的次高阶处产生跃变,次高阶的初始值不为0。

③解法:1.解出齐次解 2.根据激励形式设定特解,带入方程求出特解 3.带入初始值,得出待定系数

④解的形式:零状态响应 = 齐次解2 + 特解

2.固有响应和强迫响应

固有响应(自由响应)

①定义:固有响应是仅与系统本身特性有关,而与激励无关的响应。齐次解对应的就是固有响应。

②解法:一般是把全响应求出之后再判断。

强迫响应

①定义:强迫响应与激励的函数形式有关。特解所对应的就是强迫响应

②解法:一般是把全响应求出之后再判断。

3.暂态响应和稳态响应

暂态响应

①定义:暂态响应是响应中暂时出现的分量。 t → ∞ 时 , y → 0 t\rarr \infin时,y\rarr0 ty0

②解法:一般是把全响应求出之后再判断。

稳态响应

①定义:稳态响应是响应中稳定的分量

②解法:一般是把全响应求出之后再判断。

4.冲激响应和阶跃响应

①冲激响应:由单位阶跃函数 δ ( t ) \delta(t) δ(t)所引起的零状态响应,记为 h ( t ) h(t) h(t)

②阶跃响应:由单位阶跃信号 u ( t ) u(t) u(t)所引起的零状态响应,记为 g ( t ) g(t) g(t)

h ( t ) = d g ( t ) d t h(t)=\frac{dg(t)}{dt} h(t)=dtdg(t) g ( t ) = ∫ − ∞ t h ( τ ) d τ g(t)=\int^t_{-\infin}h(\tau)d\tau g(t)=th(τ)dτ

四.总结

①求解系统响应时我们一般从全响应 = 零状态响应 + 零输入相应入手。

固有响应 (自由响应)= 零状态响应(齐次解1)+零输入响应的齐次解部分(齐次解2)

强迫响应 = 零输入响应的特解部分

五.例题

在这里插入图片描述

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值