信号与系统笔记04:连续时间系统实频域分析

一、系统频率响应

定义系统单位冲击响应h(t)的傅里叶变换H(w)为系统频率响应,H(w) = |H(w)| e^{j \phi(w)}|H(w)|称为系统的幅频特性,\phi(w)称为系统的相频特性。

激励信号e(t),响应信号为r(t),则r(t) = e(t) \otimes h(t)

R(w) = E(w) \cdot H(w)

e(t) = Esin(w_1t+\theta_1)时,E(w) = Ej\pi\left[ \delta(w+w_1) - \delta(w-w_1) \right ] e^{jw\frac{\theta_1}{w_1}}

R(w) = E(w) \cdot H(w) \\ = Ej\pi\left[ \delta(w+w_1) - \delta(w-w_1) \right ] e^{jw\frac{\theta_1}{w_1}} \cdot H(w) \\ = E j \pi e^{jw\frac{\theta_1}{w_1}} \left[ H(-w_1) \delta(w+w_1) - H(w_1) \delta(w-w_1) \right ]

傅里叶反变换得到

r(t) = Ej \pi \left[ H(-w_1) \frac{1}{2\pi} e^{-jw_1 (t+\frac{\theta_1}{w_1})} - H(w_1) \frac{1}{2\pi} e^{jw_1(t+\frac{\theta_1}{w_1})} \right ] \\ = 0.5 Ej \left[ H(-w_1) e^{-jw_1t - j\theta_1} - H(w_1) e^{jw_1t + j\theta_1} \right ] \\ = 0.5Ej |H(w_1)| \left[ e^{-j(w_1t + \theta_1 + \phi(w_1))} - e^{j(w_1t + \theta_1 + \phi(w_1))} \right ] \\ = E|H(w_1)| sin(w_1t + \theta_1 + \phi(w_1))

频率为w_1的正弦信号激励系统所得的零状态响应依然为同频率的正弦信号,但幅度受到|H(w_1)|加权,相位发生了\phi(w_1)的相移。

同理,对于e(t) = Ecos(w_1t+\theta_1),其响应为r(t) = E |H(w_1)| cos(w_1t + \theta_1 + \phi(w_1))

二、无失真系统

若系统的输出响应能够再现系统的输入信号,仅有出现时刻和幅度的不同,即没有改变激励信号的波形形状,则称该系统为无失真传输系统。

r(t) = Ke(t-t_0)

H(w) = Ke^{-jwt_0}

R(w) = KE(w)e^{-jwt_0}

幅频特性:|H(w)| = K;幅度失真:H(w_1) \neq H(w_2)

相频特性:\phi(w) = -wt_0;相位失真:\frac{\phi(w_1)}{w_1} \neq \frac{\phi(w_2)}{w_2}

群延时:\tau = - \frac{d \phi(w)}{d w},各个频率的输出信号相较于输入信号的延时时间。

三、理想低通滤波器

低通滤波器、高通滤波器、带通滤波器、带阻滤波器

四、系统的因果性

1. 佩利-维纳准则

对于幅频特性|H(w)|,其系统物理可实现的必要条件是

\int_{-\infty}^{+\infty} \frac{|ln(|H(w)|)|}{1+w^2}dw < \infty

并且|H(w)|必须平方可积,即

\int_{-\infty}^{\infty} |H(w)|^2 dw < \infty

2. 希尔伯特变换

假设函数f(t)\hat{f}(t)构成希尔伯特变换对,则h(t) = \frac{1}{\pi t},其系统频率响应为H(w) = -j sgn(w)

幅频特性:|H(w)| = 1;相频特性:\phi(w) = -\frac{\pi}{2} sgn(w),相当于一个-90^{\circ}移相器。

利用希尔伯特变换判断系统的因果性:

LTI系统因果的充分必要条件:h(t) = h(t) u(t)

应用傅里叶变换转换的频域上,并进行整理得到

H(w) = R(w) + jX(w)

R(w) = \hat{X}(w)

即系统频率响应的实部是虚部的希尔伯特变换。

五、相关函数

对于能量信号f_1(t)f_2(t),定义其相关函数为

R_{12}(\tau) = \int_{-\infty}^{\infty} f_1(t) f_2^*(t-\tau) dt = \int_{-\infty}^{\infty} f_1(t+\tau) f_2^*(t) dt

R_{21}(\tau) = \int_{-\infty}^{\infty} f_2(t) f_1^*(t-\tau) dt = \int_{-\infty}^{\infty} f_2(t+\tau) f_1^*(t) dt

R_{12}(\tau) = R_{21}^*(-\tau)

对于信号f(t),定义其自相关函数为

R(\tau) = \int_{-\infty}^{\infty} f(t) f^*(t-\tau) dt = \int_{-\infty} ^{\infty} f(t+\tau) f^*(t) dt

R(\tau) = R^*(-\tau)

对于实信号f_1(t)f_2(t), 

R_{12}(\tau) = \int_{-\infty}^{\infty} f_1(t) f_2(t-\tau) dt = \int_{-\infty}^{\infty} f_1(t) f_2(-(\tau-t)) dt = f_1(\tau) \otimes f_2(-\tau)

即,R_{12}(t) = f_1(t) \otimes f_2(-t)

由时域卷积定理可知,

F\left[ R_{12}(\tau) \right ] = F_1(w) F_2^*(w)

六、激励与响应的谱关系

1. 能量谱

信号f(t)的能量谱函数为\varepsilon(w) = |F(w)|^2,能量谱与自相关函数是一对傅里叶变换对。

F\left[ R(\tau) \right ] = F(w) F^*(w) = |F(w)|^2

|F(w)|^2 = \int_{-\infty}^{\infty} R(\tau) e^{-jw\tau} d\tau

R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(w)|^2 e^{jw\tau} d\tau

\int_{-\infty}^{\infty} |f(t)|^2 dt = R(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(w)|^2 dw

2. 功率谱

功率信号f(t)的功率谱函数为p(w) = \lim_{T \rightarrow \infty} \frac{|F_T(w)|^2}{T},功率信号的功率谱函数与其自相关函数是一对傅里叶变换。

R(\tau) = \lim_{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) f^*(t-\tau) dt

维纳-欣钦定理:

p(w)=\int_{-\infty}^{\infty} R(\tau) e^{-jw\tau}d\tau

R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} p(w) e^{jw\tau} dw

3. LTI系统激励与响应的谱关系

r(t) = e(t) \otimes h(t)

R(w) = E(w)H(w)

R(w)R^*(w) = E(w)H(w) E^*(w)H^*(w)\\ = E(w)E^*(w)H(w)H^*(w)\\

\varepsilon_r(w) = \varepsilon_e(w) |H(w)|^2

p_r(w) = p_e(w) |H(w)|^2

七、实用性抽样系统分析模型

f_s(t) = f(t)\delta_{T_{s}}(t) \otimes h_s(t) 

f(t)\delta_{T_{s}}(t)的频谱为:\frac{1}{T_s} \sum_{n=-\infty}^{\infty} F(w-nw_s)

F_s(w) = \frac{H_s(w)}{T_s} \sum_{n=-\infty}^{\infty} F(w-nw_s)

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值