熵权法、极差法标准化简介与实战

熵权法有啥用?

可利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据。
下面的实战中,最终计算的熵权结果为,C语言课程成绩权重占0.99,剩下的两门课成绩权重几乎为0,很好理解,因为体育和数据库大家的分都普遍偏高,体现不出来设么东西。

什么是熵

在这里插入图片描述

熵权如何计算

在这里插入图片描述

实战示例

在这里插入图片描述

一、计算每一列的总和

在这里插入图片描述

二、每一个数据更新为除以总和后的值,即Pij

在这里插入图片描述

三、计算ln(Pij)

在这里插入图片描述

四、得到熵值Hi

如果存在0的话,可以通过平移法,在有0的那类指标里每个指标都加上一个很小的数,如0.001,再进行计算。或者直接赋值为0
在这里插入图片描述

使用公式计算熵值Hi,其中n表示一共几个学生
在这里插入图片描述

五、得到熵权Wi

在这里插入图片描述

在这里插入图片描述

总结与反思

经过这个实例,我们可以发现,当一组数据波动比较大时,它的权重是很大的,但我们不禁反思熵权法存在的问题,难道数据库原理就没有参考价值?
我们最后得到的Wi是客观值,但是我们可以认为主观的进行调整,主观客观相结合也是很棒的哦!

优点

  • 能深刻反映出指标的区分能力,进而确定权重
  • 是一种客观赋权法,相对主管赋权具有较高的可信度和精确度
  • 算法简单

缺点

  • 不够智能,没有考虑指标与指标之间的影响,如:相关性、层级关系等
  • 若无业务经验指导,权重可能失真
  • 对样本的依赖性较大,随着建模样本不断变化,权重会发生一定波动

注意的地方

当一个表的几组数据单位不同时,我们应该对数据进行极差标准化,用标准化后的数据来进行熵权法分析,如图,这个表最下面的p开始,这一部分就是在计算p哦,就是咱们上面的第二步
在这里插入图片描述

极差法标准化公式:
在这里插入图片描述

通过极差法标准化,我们就可以把原来的数据标准化到0-1之间内了,哈哈哈爽哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笼中小夜莺

嘿嘿嘿,请用金钱尽情地蹂躏我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值