按日更新股票数据——从零到实盘13

前文介绍了多进程创建股票数据的过程,整个创建过程大概约10几分钟。在实盘时,每个交易日都有新数据生成,我们没有必要对全面历史时间都进行重新创建计算,只需要下载新产生的日线数据,每次更新需要3分钟左右。本文记录多进程按日更新股票数据的过程。

主要代码分析

新建源文件,命名为data_center_v11.py,全部内容见文末,v11新增2个函数:

新增更新数据函数

def update_data(stock_codes, query_days=60, adjustflag='2'):

该函数用于更新日线数据,计算相关因子,其中:

  • 参数stock_codes为新数据的股票代码
  • 参数query_days为在数据库中查询历史日线数据的天数,用于计算扩展因子,需要根据扩展因子设置,这里要计算60日均线,所以最小设置为60
  • 参数adjustflag为复权选项,为1时表示后复权,为2时表示前复权,为3时表示不复权,默认为前复权
  • 返回值为包含所有待处理股票的最新一日日线数据及扩展因子的DataFrame
    engine = create_mysql_engine()

创建数据库引擎对象。

    latest_df = pd.DataFrame()

创建空DataFrame,存储最新一日的数据。

    for index, code in enumerate(stock_codes):

更新数据循环。

        bs.login()

登录BaoStock。

        table_name = '{}_{}'.format(code[3:], code[:2])

股票数据在数据库中的表名。

        if table_name not in sqlalchemy.inspect(engine).get_table_names():
            continue

判断是否存在该表,不存在则跳过。

        sql_cmd = 'SELECT * FROM {} ORDER BY date DESC LIMIT {};'.format(table_name, query_days)
        read_df = pd.read_sql(sql=sql_cmd, con=engine)

获取按时间排序的最后query_days行数据。

        if read_df.shape[0] < query_days:
            continue

如果数据少于query_days,则不更新。

        read_df = read_df.sort_values(by='id', ascending=True)

数据按id(date)升序排序,后续计算扩展因子需要数据按日期升序排序。

        last_id = read_df['id'].iloc[-1]
        from_date = read_df['date'].iloc[-1]

获取数据库中最新数据日期及id。

        if from_date >= datetime.date.today().strftime('%Y-%m-%d'):

如果数据库中已包含最新一日数据。

            latest_series = read_df.iloc[-1].copy()
            latest_series['code'] = code[3:]
            latest_df = latest_df.append(latest_series)
            continue

将最新一日数据,添加code字段,append到latest_df中,并进行下一只股票更新。

        from_date = (datetime.datetime.strptime(
            from_date, '%Y-%m-%d') + datetime.timedelta(days=1)).strftime('%Y-%m-%d')

计算待更新数据的开始日期。

        out_df = bs.query_history_k_data_plus(code, g_baostock_data_fields, start_date=from_date,
                                              end_date=datetime.date.today().strftime('%Y-%m-%d'),
                                              frequency='d', adjustflag=adjustflag).get_data()

下载从开始日期到当日的日线数据。

        if out_df.shape[0]:
            out_df = out_df[(out_df['volume'] != '0') & (out_df['volume'] != '')]

剔除停盘数据。

        if not out_df.shape[0]:
            continue

过滤后如果数据为空,则不更新。

        convert_list = ['open', 'high', 'low', 'close', 'preclose', 'volume', 'amount', 'turn', 'pctChg']
        out_df[convert_list] = out_df[convert_list].astype(float)

将数值数据转为float型,便于后续处理。

        new_rows = out_df.shape[0]

记录新添加的行数。

        out_df = read_df[list(out_df)].append(out_df)

获取下载字段,拼接DataFrame,用于后续计算扩展指标。

        out_df.reset_index(drop=True, inplace=True)

重置索引。

        out_df = extend_factor(out_df)

计算扩展因子

        out_df = out_df.iloc[-new_rows:]

取最后new_rows行。

        out_df['id'] = pd.Series(np.arange(last_id + 1, last_id + 1 + new_rows), index=out_df.index)

更新id。

        out_df.to_sql(name=table_name, con=engine, if_exists='append', index=False)

将更新数据添加到数据库。

        latest_series = out_df.iloc[-1].copy()
        latest_series['code'] = code[3:]
        latest_df = latest_df.append(latest_series)

将更新的最后一行添加code字段,append到latest_df中。

    return latest_df

返回包含最新一日股票日线数据的DataFrame。

新增多进程更新数据函数

def update_data_mp(stock_codes, process_num=61, query_days=60, adjustflag='2'):

该函数使用多进程更新日线数据,计算扩展因子,其中:

  • 参数stock_codes为待更新数据的股票代码
  • 参数process_num为进程数
  • 参数query_days为在数据库中查询历史日线数据的天数,用于计算扩展因子
  • 参数adjustflag为复权选项,为1时表示后复权,为2时表示前复权,为3时表示不复权,默认为前复权
  • 返回值为包含所有待处理股票的最新一日日线数据的DataFrame

该函数会将最新一日各个股票数据存储在数据库表latest中,便于后续筛选候选股票使用。

    latest_df = multiprocessing_func_df(update_data, (process_num, stock_codes, query_days, adjustflag,))

多进程计算获得最新日线数据,调用multiprocessing_func_df函数,收集子进程调用update_data函数返回的DataFrame数据。

    if latest_df.shape[0]:
        latest_df.to_sql(name='latest', con=create_mysql_engine(), if_exists='replace', index=False)

将所有股票最新一日日线数据写入数据库表latest。

    return latest_df

返回值包含所有待处理股票的最新一日日线数据的DataFrame。

2021年11月26日更新后latest表如下图所示:

小结

本文实现了多进程更新股票数据,并把最新一日各只股票的数据存在数据库表latest中,供后续候选股票筛选使用。
下一篇文章将记录筛选候选股票的过程。


data_center_v11.py的全部代码如下:

import baostock as bs
import datetime
import time
import sys
import numpy as np
import pandas as pd
import multiprocessing
import sqlalchemy
import matplotlib.pyplot as plt
from pandas.plotting import table

# 可用日线数量约束
g_available_days_limit = 250

# BaoStock日线数据字段
g_baostock_data_fields = 'date,open,high,low,close,preclose,volume,amount,adjustflag,turn,tradestatus,pctChg,peTTM,pbMRQ, psTTM,pcfNcfTTM,isST'


def create_mysql_engine():
    """
    创建数据库引擎对象

    :return: 新创建的数据库引擎对象
    """

    # 引擎参数信息
    host = 'localhost'
    user = 'root'
    passwd = '111111'
    port = '3306'
    db = 'db_quant'

    # 创建数据库引擎对象
    mysql_engine = sqlalchemy.create_engine(
        'mysql+pymysql://{0}:{1}@{2}:{3}'.format(user, passwd, host, port),
        poolclass=sqlalchemy.pool.NullPool
    )

    # 如果不存在数据库db_quant则创建
    mysql_engine.execute("CREATE DATABASE IF NOT EXISTS {0} ".format(db))

    # 创建连接数据库db_quant的引擎对象
    db_engine = sqlalchemy.create_engine(
        'mysql+pymysql://{0}:{1}@{2}:{3}/{4}?charset=utf8'.format(user, passwd, host, port, db),
        poolclass=sqlalchemy.pool.NullPool
    )

    # 返回引擎对象
    return db_engine


def get_stock_codes(date=None, update=False):
    """
    获取指定日期的A股代码列表

    若参数update为False,表示从数据库中读取股票列表
    若数据库中不存在股票列表的表,或者update为True,则下载指定日期date的交易股票列表
    若参数date为空,则返回最近1个交易日的A股代码列表
    若参数date不为空,且为交易日,则返回date当日的A股代码列表
    若参数date不为空,但不为交易日,则打印提示非交易日信息,程序退出

    :param date: 日期,默认为None
    :param update: 是否更新股票列表,默认为False
    :return: A股代码的列表
    """

    # 创建数据库引擎对象
    engine = create_mysql_engine()

    # 数据库中股票代码的表名
    table_name = 'stock_codes'

    # 数据库中不存在股票代码表,或者需要更新股票代码表
    if table_name not in sqlalchemy.inspect(engine).get_table_names() or update:

        # 登录baostock
        bs.login()

        # 从BaoStock查询股票数据
        stock_df = bs.query_all_stock(date).get_data()

        # 如果获取数据长度为0,表示日期date非交易日
        if 0 == len(stock_df):

            # 如果设置了参数date,则打印信息提示date为非交易日
            if date is not None:
                print('当前选择日期为非交易日或尚无交易数据,请设置date为历史某交易日日期')
                sys.exit(0)

            # 未设置参数date,则向历史查找最近的交易日,当获取股票数据长度非0时,即找到最近交易日
            delta = 1
            while 0 == len(stock_df):
                stock_df = bs.query_all_stock(datetime.date.today() - datetime.timedelta(days=delta)).get_data()
                delta += 1

        # 注销登录
        bs.logout()

        # 筛选股票数据,上证和深证股票代码在sh.600000与sz.39900之间
        stock_df = stock_df[(stock_df['code'] >= 'sh.600000') & (stock_df['code'] < 'sz.399000')]

        # 将股票代码写入数据库
        stock_df.to_sql(name=table_name, con=engine, if_exists='replace', index=False, index_label=False)

        # 返回股票列表
        return stock_df['code'].tolist()

    # 从数据库中读取股票代码列表
    else:

        # 待执行的sql语句
        sql_cmd = 'SELECT {} FROM {}'.format('code', table_name)

        # 读取sql,返回股票列表
        return pd.read_sql(sql=sql_cmd, con=engine)['code'].tolist()


def create_data(stock_codes, from_date='1990-12-19', to_date=datetime.date.today().strftime('%Y-%m-%d'),
                adjustflag='2'):
    """
    下载指定日期内,指定股票的日线数据,计算扩展因子

    :param stock_codes: 待下载数据的股票代码
    :param from_date: 日线开始日期
    :param to_date: 日线结束日期
    :param adjustflag: 复权选项 1:后复权  2:前复权  3:不复权  默认为前复权
    :return: None
    """

    # 创建数据库引擎对象
    engine = create_mysql_engine()

    # 下载股票循环
    for index, code in enumerate(stock_codes):
        print('({}/{})正在创建{}...'.format(index + 1, len(stock_codes), code))

        # 登录BaoStock
        bs.login()

        # 下载日线数据
        out_df = bs.query_history_k_data_plus(code, g_baostock_data_fields, start_date=from_date, end_date=to_date,
                                              frequency='d', adjustflag=adjustflag).get_data()

        # 剔除停盘数据
        if out_df.shape[0]:
            out_df = out_df[(out_df['volume'] != '0') & (out_df['volume'] != '')]

        # 如果数据为空,则不创建
        if not out_df.shape[0]:
            continue

        # 删除重复数据
        out_df.drop_duplicates(['date'], inplace=True)

        # 日线数据少于g_available_days_limit,则不创建
        if out_df.shape[0] < g_available_days_limit:
            continue

        # 将数值数据转为float型,便于后续处理
        convert_list = ['open', 'high', 'low', 'close', 'preclose', 'volume', 'amount', 'turn', 'pctChg']
        out_df[convert_list] = out_df[convert_list].astype(float)

        # 重置索引
        out_df.reset_index(drop=True, inplace=True)

        # 计算扩展因子
        out_df = extend_factor(out_df)

        # 写入数据库
        table_name = '{}_{}'.format(code[3:], code[:2])
        out_df.to_sql(name=table_name, con=engine, if_exists='replace', index=True, index_label='id')


def get_code_group(process_num, stock_codes):
    """
    获取代码分组,用于多进程计算,每个进程处理一组股票

    :param process_num: 进程数
    :param stock_codes: 待处理的股票代码
    :return: 分组后的股票代码列表,列表的每个元素为一组股票代码的列表
    """

    # 创建空的分组
    code_group = [[] for i in range(process_num)]

    # 按余数为每个分组分配股票
    for index, code in enumerate(stock_codes):
        code_group[index % process_num].append(code)

    return code_group


def multiprocessing_func(func, args):
    """
    多进程调用函数

    :param func: 函数名
    :param args: func的参数,类型为元组,第0个元素为进程数,第1个元素为股票代码列表
    :return: 包含各子进程返回对象的列表
    """

    # 用于保存各子进程返回对象的列表
    results = []

    # 创建进程池
    with multiprocessing.Pool(processes=args[0]) as pool:
        # 多进程异步计算
        for codes in get_code_group(args[0], args[1]):
            results.append(pool.apply_async(func, args=(codes, *args[2:],)))

        # 阻止后续任务提交到进程池
        pool.close()

        # 等待所有进程结束
        pool.join()

    return results


def create_data_mp(stock_codes, process_num=61,
                   from_date='1990-12-19', to_date=datetime.date.today().strftime('%Y-%m-%d'), adjustflag='2'):
    """
    使用多进程创建指定日期内,指定股票的日线数据,计算扩展因子

    :param stock_codes: 待创建数据的股票代码
    :param process_num: 进程数
    :param from_date: 日线开始日期
    :param to_date: 日线结束日期
    :param adjustflag: 复权选项 1:后复权  2:前复权  3:不复权  默认为前复权
    :return: None
    """

    multiprocessing_func(create_data, (process_num, stock_codes, from_date, to_date, adjustflag,))


def extend_factor(df):
    """
    计算扩展因子

    :param df: 待计算扩展因子的DataFrame
    :return: 包含扩展因子的DataFrame
    """

    # 使用pipe依次计算涨停、双神及是否为候选股票
    df = df.pipe(zt).pipe(ss, delta_days=30).pipe(candidate)

    return df


def zt(df):
    """
    计算涨停因子

    若涨停,则因子为True,否则为False
    以当日收盘价较前一日收盘价上涨9.8%及以上作为涨停判断标准

    :param df: 待计算扩展因子的DataFrame
    :return: 包含扩展因子的DataFrame
    """

    df['zt'] = np.where((df['close'].values >= 1.098 * df['preclose'].values), True, False)

    return df


def shift_i(df, factor_list, i, fill_value=0, suffix='a'):
    """
    计算移动因子,用于获取前i日或者后i日的因子

    :param df: 待计算扩展因子的DataFrame
    :param factor_list: 待移动的因子列表
    :param i: 移动的步数
    :param fill_value: 用于填充NA的值,默认为0
    :param suffix: 值为a(ago)时表示移动获得历史数据,用于计算指标;值为l(later)时表示获得未来数据,用于计算收益
    :return: 包含扩展因子的DataFrame
    """

    # 选取需要shift的列构成新的DataFrame,进行shift操作
    shift_df = df[factor_list].shift(i, fill_value=fill_value)

    # 对新的DataFrame列进行重命名
    shift_df.rename(columns={x: '{}_{}{}'.format(x, i, suffix) for x in factor_list}, inplace=True)

    # 将重命名后的DataFrame合并到原始DataFrame中
    df = pd.concat([df, shift_df], axis=1)

    return df


def shift_till_n(df, factor_list, n, fill_value=0, suffix='a'):
    """
    计算范围移动因子

    用于获取前/后n日内的相关因子,内部调用了shift_i

    :param df: 待计算扩展因子的DataFrame
    :param factor_list: 待移动的因子列表
    :param n: 移动的步数范围
    :param fill_value: 用于填充NA的值,默认为0
    :param suffix: 值为a(ago)时表示移动获得历史数据,用于计算指标;值为l(later)时表示获得未来数据,用于计算收益
    :return: 包含扩展因子的DataFrame
    """

    for i in range(n):
        df = shift_i(df, factor_list, i + 1, fill_value, suffix)
    return df


def ss(df, delta_days=30):
    """
    计算双神因子,即间隔的两个涨停

    若当日形成双神,则因子为True,否则为False

    :param df: 待计算扩展因子的DataFrame
    :param delta_days: 两根涨停间隔的时间不能超过该值,否则不判定为双神,默认值为30
    :return: 包含扩展因子的DataFrame
    """

    # 移动涨停因子,求取近delta_days天内的涨停情况,保存在一个临时DataFrame中
    temp_df = shift_till_n(df, ['zt'], delta_days, fill_value=False)

    # 生成列表,用于后续检索第2天前至第delta_days天前是否有涨停出现
    col_list = ['zt_{}a'.format(x) for x in range(2, delta_days + 1)]

    # 计算双神,需同时满足3个条件:
    # 1、第2天前至第delta_days天前,至少有1个涨停
    # 2、1天前不是涨停(否则就是连续涨停,不是间隔的涨停)
    # 3、当天是涨停
    df['ss'] = temp_df[col_list].any(axis=1) & ~temp_df['zt_1a'] & temp_df['zt']

    return df


def ma(df, n=5, factor='close'):
    """
    计算均线因子

    :param df: 待计算扩展因子的DataFrame
    :param n: 待计算均线的周期,默认计算5日均线
    :param factor: 待计算均线的因子,默认为收盘价
    :return: 包含扩展因子的DataFrame
    """

    # 均线名称,例如,收盘价的5日均线名称为ma_5,成交量的5日均线名称为volume_ma_5
    name = '{}ma_{}'.format('' if 'close' == factor else factor + '_', n)

    # 取待计算均线的因子列
    s = pd.Series(df[factor], name=name, index=df.index)

    # 利用rolling和mean计算均线数据
    s = s.rolling(center=False, window=n).mean()

    # 将均线数据添加到原始的DataFrame中
    df = df.join(s)

    # 均线数值保留两位小数
    df[name] = df[name].apply(lambda x: round(x + 0.001, 2))

    return df


def mas(df, ma_list, factor='close'):
    """
    计算多条均线因子,内部调用ma计算单条均线

    :param df: 待计算扩展因子的DataFrame
    :param ma_list: 待计算均线的周期列表
    :param factor: 待计算均线的因子,默认为收盘价
    :return: 包含扩展因子的DataFrame
    """

    for i in ma_list:
        df = ma(df, i, factor)
    return df


def cross_mas(df, ma_list):
    """
    计算穿均线因子

    若当日最低价不高于均线价格
    且当日收盘价不低于均线价格
    则当日穿均线因子值为True,否则为False

    :param df: 待计算扩展因子的DataFrame
    :param ma_list: 均线的周期列表
    :return: 包含扩展因子的DataFrame
    """

    for i in ma_list:
        df['cross_{}'.format(i)] = (df['low'] <= df['ma_{}'.format(i)]) & (
                df['ma_{}'.format(i)] <= df['close'])
    return df


def candidate(df):
    """
    计算是否为候选

    若当日日线同时穿过5、10、20、30日均线
    且30日均线在60日均线上方
    且当日形成双神
    则当日作为候选,该因子值为True,否则为False

    :param df: 待计算扩展因子的DataFrame
    :return: 包含扩展因子的DataFrame
    """

    # 均线周期列表
    ma_list = [5, 10, 20, 30, 60]

    # 计算均线的因子,保存到临时的DataFrame中
    temp_df = mas(df, ma_list)

    # 计算穿多线的因子,保存到临时的DataFrame中
    temp_df = cross_mas(temp_df, ma_list)

    # 穿多线因子的列名列表
    column_list = ['cross_{}'.format(x) for x in ma_list[:-1]]

    # 计算是否为候选
    df['candidate'] = temp_df[column_list].all(axis=1) & (temp_df['ma_30'] >= temp_df['ma_60']) & df['ss']

    return df


def profit_loss_statistic(stock_codes, hold_days=10):
    """
    盈亏分布统计,计算当日candidate为True,持仓hold_days天的收益分布

    :param stock_codes: 待分析的股票代码
    :param hold_days: 持仓天数
    :return: 筛选出符合买入条件的股票DataFrame
    """

    # 创建数据库引擎对象
    engine = create_mysql_engine()

    # 创建空的DataFrame
    candidate_df = pd.DataFrame()

    # 计算收益分布循环
    for code in stock_codes:
        print('正在处理{}...'.format(code))

        # 股票数据在数据库中的表名
        table_name = '{}_{}'.format(code[3:], code[:2])

        # 如果数据库中没有该股票数据则跳过
        if table_name not in sqlalchemy.inspect(engine).get_table_names():
            continue

        # 从数据库读取特定字段数据
        cols = 'date, open, high, low, close, candidate'
        sql_cmd = 'SELECT {} FROM {} ORDER BY date DESC'.format(cols, table_name)
        df = pd.read_sql(sql=sql_cmd, con=engine)

        # 移动第2日开盘价、最低价,以及hold_days的最高价、最低价数据
        df = shift_i(df, ['open'], 1, suffix='l')
        df = shift_till_n(df, ['high', 'low'], hold_days, suffix='l')

        # 丢弃最近hold_days日的数据
        df = df.iloc[hold_days: df.shape[0] - g_available_days_limit, :]

        # 选取出现买点的股票
        df = df[(df['candidate'] > 0) & (df['low_1l'] <= df['close'])]

        # 将数据添加到候选池中
        if df.shape[0]:
            df['code'] = code
            candidate_df = candidate_df.append(df)

    if candidate_df.shape[0]:
        # 计算最大盈利
        # 买入当天无法卖出,因此计算最大收益时,从第2日开始
        cols = ['high_{}l'.format(x) for x in range(2, hold_days + 1)]
        candidate_df['max_high'] = candidate_df[cols].max(axis=1)
        candidate_df['max_profit'] = candidate_df['max_high'] / candidate_df[['open_1l', 'close']].min(axis=1) - 1

        # 计算最大亏损
        cols = ['low_{}l'.format(x) for x in range(2, hold_days + 1)]
        candidate_df['min_low'] = candidate_df[cols].min(axis=1)
        candidate_df['max_loss'] = candidate_df['min_low'] / candidate_df[['open_1l', 'close']].min(axis=1) - 1

    return candidate_df


def multiprocessing_func_df(func, args):
    """
    多进程调用函数,收集返回各子进程返回的DataFrame

    :param func: 函数名
    :param args: func的参数,类型为元组,第0个元素为进程数,第1个元素为股票代码列表
    :return: 包含各子进程返回值的DataFrame
    """

    # 多进程调用函数func,获取子进程返回对象的列表
    results = multiprocessing_func(func, args)

    # 构建空DataFrame
    df = pd.DataFrame()

    # 收集各进程返回值
    for i in results:
        df = df.append(i.get())

    return df


def profit_loss_statistic_mp(stock_codes, process_num=61, hold_days=10):
    """
    多进程盈亏分布统计,计算当日candidate为True,持仓hold_days天的收益分布
    输出数据分布表格及图片文件

    :param stock_codes: 待分析的股票代码
    :param process_num: 进程数
    :param hold_days: 持仓天数
    :return: None
    """

    # 多进程计算获得候选股票数据
    candidate_df = multiprocessing_func_df(profit_loss_statistic, (process_num, stock_codes, hold_days,))

    # 将收益分布数据保存到excel文件
    candidate_df[['date', 'code', 'max_profit', 'max_loss']].to_excel(
        'profit_loss_{}.xlsx'.format(hold_days), index=False, encoding='utf-8')

    # 重置索引,方便后面绘图
    candidate_df.reset_index(inplace=True)

    # 设置绘图格式并绘图
    fig, ax = plt.subplots(1, 1)
    table(ax, np.round(candidate_df[['max_profit', 'max_loss']].describe(), 4), loc='upper right',
          colWidths=[0.2, 0.2, 0.2])
    candidate_df[['max_profit', 'max_loss']].plot(ax=ax, legend=None)

    # 保存图表
    fig.savefig('profit_loss_{}.png'.format(hold_days))

    # 显示图表
    plt.show()


def update_data(stock_codes, query_days=60, adjustflag='2'):
    """
    更新日线数据,计算相关因子

    :param stock_codes: 待更新数据的股票代码
    :param query_days: 在数据库中查询历史日线数据的天数,用于计算扩展因子,需要根据扩展因子设置,这里要计算60日均线,所以最小设置为60
    :param adjustflag: 复权选项 1:后复权  2:前复权  3:不复权  默认为前复权
    :return: 包含所有待处理股票的最新一日日线数据及扩展因子的DataFrame
    """

    # 创建数据库引擎对象
    engine = create_mysql_engine()

    # 创建空DataFrame,存储最新一日的数据
    latest_df = pd.DataFrame()

    # 更新数据循环
    for index, code in enumerate(stock_codes):
        print('({}/{})正在更新{}...'.format(index + 1, len(stock_codes), code))

        # 登录BaoStock
        bs.login()

        # 股票数据在数据库中的表名
        table_name = '{}_{}'.format(code[3:], code[:2])

        # 判断是否存在该表,不存在则跳过
        if table_name not in sqlalchemy.inspect(engine).get_table_names():
            continue

        # 获取按时间排序的最后query_days行数据
        sql_cmd = 'SELECT * FROM {} ORDER BY date DESC LIMIT {};'.format(table_name, query_days)
        read_df = pd.read_sql(sql=sql_cmd, con=engine)

        # 如果数据少于query_days,则不更新
        if read_df.shape[0] < query_days:
            continue

        # 数据按id(date)升序排序
        read_df = read_df.sort_values(by='id', ascending=True)

        # 获取数据库中最新数据日期及id
        last_id = read_df['id'].iloc[-1]
        from_date = read_df['date'].iloc[-1]

        # 如果数据库中已包含最新一日数据
        if from_date >= datetime.date.today().strftime('%Y-%m-%d'):

            # 将最新一日数据,添加code字段,append到latest_df中,并进行下一只股票更新
            latest_series = read_df.iloc[-1].copy()
            latest_series['code'] = code[3:]
            latest_df = latest_df.append(latest_series)
            print('{}当前已为最新数据'.format(code))
            continue

        # 计算待更新数据的开始日期
        from_date = (datetime.datetime.strptime(
            from_date, '%Y-%m-%d') + datetime.timedelta(days=1)).strftime('%Y-%m-%d')

        # 下载日线数据
        out_df = bs.query_history_k_data_plus(code, g_baostock_data_fields, start_date=from_date,
                                              end_date=datetime.date.today().strftime('%Y-%m-%d'),
                                              frequency='d', adjustflag=adjustflag).get_data()

        # 剔除停盘数据
        if out_df.shape[0]:
            out_df = out_df[(out_df['volume'] != '0') & (out_df['volume'] != '')]

        # 如果数据为空,则不更新
        if not out_df.shape[0]:
            continue

        # 将数值数据转为float型,便于后续处理
        convert_list = ['open', 'high', 'low', 'close', 'preclose', 'volume', 'amount', 'turn', 'pctChg']
        out_df[convert_list] = out_df[convert_list].astype(float)

        # 新添加行数
        new_rows = out_df.shape[0]

        # 获取下载字段,拼接DataFrame,用于后续计算扩展指标
        out_df = read_df[list(out_df)].append(out_df)

        # 重置索引
        out_df.reset_index(drop=True, inplace=True)

        # 计算扩展因子
        out_df = extend_factor(out_df)

        # 取最后new_rows行
        out_df = out_df.iloc[-new_rows:]

        # 判读是否有字段缺失
        if np.any(out_df.isnull()):
            print('{}有缺失字段!!!'.format(code))

        # 更新id
        out_df['id'] = pd.Series(np.arange(last_id + 1, last_id + 1 + new_rows), index=out_df.index)

        # 将更新数据写入数据库
        out_df.to_sql(name=table_name, con=engine, if_exists='append', index=False)

        # 将更新的最后一行添加code字段,append到latest_df中
        latest_series = out_df.iloc[-1].copy()
        latest_series['code'] = code[3:]
        latest_df = latest_df.append(latest_series)

    # 返回包含最新一日股票日线数据的DataFrame
    return latest_df


def update_data_mp(stock_codes, process_num=61, query_days=60, adjustflag='2'):
    """
    使用多进程更新日线数据,计算扩展因子

    :param stock_codes: 待更新数据的股票代码
    :param process_num: 进程数
    :param query_days: 在数据库中查询历史日线数据的天数,用于计算扩展因子
    :param adjustflag: 复权选项 1:后复权  2:前复权  3:不复权  默认为前复权
    :return: 包含所有待处理股票的最新日线数据的DataFrame
    """

    # 多进程更新数据,获取最新日线数据的DataFrame
    latest_df = multiprocessing_func_df(update_data, (process_num, stock_codes, query_days, adjustflag,))

    # 将所有股票最新日线数据写入数据库表latest
    if latest_df.shape[0]:
        latest_df.to_sql(name='latest', con=create_mysql_engine(), if_exists='replace', index=False)

    return latest_df


if __name__ == '__main__':
    start_time = time.time()
    stock_codes = get_stock_codes()
    update_data_mp(stock_codes)
    end_time = time.time()
    print('程序运行时间:{}s'.format(end_time - start_time))

博客内容只用于交流学习,不构成投资建议,盈亏自负!

个人博客:http://coderx.com.cn/(优先更新)
项目最新代码:https://gitee.com/sl/quant_from_scratch
欢迎大家转发、留言。有微信群用于学习交流,感兴趣的读者请扫码加微信!
如果认为博客对您有帮助,可以扫码进行捐赠,感谢!

微信二维码微信捐赠二维码
在这里插入图片描述在这里插入图片描述
  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
Keras深度学习实战(15)——从零开始实现YOLO目标检测是一篇非常实用的教程。YOLO(You Only Look Once)是一种流行的实时目标检测算法,其核心思想是将目标检测任务视为回归问题,并通过卷积神经网络实现端到端的检测。这篇教程提供了一步一步的实现代码,让读者能够快速了解并实践YOLO目标检测的方法。 首先,教程介绍了YOLO的工作原理和网络结构。YOLO将输入图像划分为多个网格,每个网格负责预测包含在该网格中的目标。每个网格预测包含目标的方框的位置和类别,以及目标的置信度。 接下来,教程详细介绍了如何实现YOLO的网络结构。使用Keras库,创建了一个具有卷积和池化层的卷积神经网络。还使用了Anchor Boxes,用来预测不同比例和宽高比的目标。 教程还介绍了如何预处理输入图像,包括将图像调整为适当的大小,并将目标边界框转换为YOLO需要的格式。然后,选择了合适的损失函数,训练了模型,以及进行了模型评估和预测。 最后,教程提供了一些改进和扩展的思路,包括使用大的数据集进行训练、调整网络结构和超参数等等。 通过这篇教程,读者可以了解到YOLO目标检测的基本原理和实现步骤。并且,使用Keras库可以很方便地实现和训练自己的YOLO模型。无论是对于已经有一定深度学习基础的读者,还是对于刚刚开始学习的读者,这篇教程都是非常有价值的参考资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值