使用pytorch实现LSTM自动AI作诗(藏头诗和首句续写)

本博客介绍了使用PyTorch实现LSTM模型进行自动作诗的方法,包括根据给定诗句生成古诗和藏头诗。数据集来源于chinese-poetry,模型由Embedding、LSTM和Linear层组成,通过训练学习诗词的语义信息,生成诗词的概率分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大家好,我是阿光。

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


一、LSTM自动AI作诗

本项目使用了LSTM作为模型实现AI作诗,作诗模式分为两种,一是根据给定诗句继续生成完整诗句,二是给定诗头生成藏头诗。

在这里插入图片描述

二、数据集介绍

数据来源于chinese-poetry,

基于LSTM的诗词生成模型是一种使用长短期记忆(LSTM深度学习模型来生成诗词的方法。这种模型可以通过学习大量的古诗词数据集,自动地生成符合古诗词形式意境的新诗词。 该模型的实现过程可以分为以下几个步骤: 1. 数据预处理:首先需要准备一个包含大量古诗词的数据集。然后,将每个古诗词转换为数字序列,以便于模型处理。可以使用字典来将每个字或词映射到一个唯一的数字。 2. 构建LSTM模型:使用深度学习框架(如TensorFlow或PyTorch)构建一个LSTM模型。LSTM模型是一种递归神经网络,可以处理序列数据并具有记忆能力。模型的输入是前面的字或词序列,输出是下一个字或词的预测。 3. 模型训练:使用数据集训练LSTM模型。在训练过程中,模型会根据已知的输入序列预测下一个字或词,并与实际的下一个字或词进行比较,通过反向传播算法来更新模型的参数,使得预测结果逐渐接近实际结果。 4. 生成诗词:训练完成后,可以使用已训练好的模型来生成新的诗词。可以选择随机生成诗词或者根据给定的首句生成藏头诗。生成过程中,模型会根据前面的字或词序列预测下一个字或词,然后将预测结果作为输入继续预测下一个字或词,直到生成完整的诗词。 基于LSTM的诗词生成模型可以通过训练大量的古诗词数据集来学习古诗词的规律风格,从而生成具有相似风格的新诗词。然而,生成的诗词质量意境还有待改进,需要进一步优化模型训练算法。
评论 50
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值