CNN+LSTM+Attention实现时间序列预测(PyTorch版)

  • 7
    点赞
  • 79
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 11
    评论
CNN LSTM Attention是一种结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制(Attention)的神经网络模型。这个模型在处理时序数据时非常有效。 具体来说,CNN LSTM Attention模型通过使用CNN来提取输入时序数据的局部特征,并将这些特征输入到LSTM中进行序列建模。LSTM可以捕捉时序数据中的长期依赖关系,并生成隐含状态来表示数据的序列信息。 而Attention机制则用于在每个时间步上选择性地聚焦于输入数据的不同部分,以便更好地捕捉关键信息。通过注意力机制,模型可以动态地调整对不同输入部分的关注程度,从而提高模型对重要特征的感知能力和预测准确性。 总结来说,CNN LSTM Attention模型利用CNN提取特征、LSTM建模序列和Attention机制聚焦关键信息的能力,使其能够更好地处理时序数据并进行预测。这种模型在许多领域,如自然语言处理、音频处理和视频分析等方面具有广泛的应用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [DNN结构:CNNLSTM/RNN中的Attention结构](https://blog.csdn.net/wishchin/article/details/80942853)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [cnn+lstm+attention对时序数据进行预测](https://download.csdn.net/download/qq_30803353/87459420)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值