人工智能——Search搜索问题

本文深入探讨人工智能中的Search问题,包括状态空间、初始状态、行动、移动模型、目标测试和行动成本等概念。重点讲解了盲目搜索(如深度优先、广度优先和统一成本搜索)和启发式搜索(如A*算法),并分析了启发函数在估计最优路径中的作用。同时,通过八数码问题实例解释了启发式搜索的应用。
摘要由CSDN通过智能技术生成

人工智能—— Chapter02 Search

问题导向:

  • 我们想采取一些行动来改变世界的状态(但由行为引起的变化完全是可以预料到的)
  • 我们试着采取一系列的行动引导我们达到目标状态(可能是最小化行动的次数,也可能是最小化行动的总成本)
  • 不需要在现实生活中执行行动的同时找到最小解决方案(让所有事都在意料之中)

重要知识点:
Q1:A search problem consists of?

  • A state space S (状态空间——所有节点)
  • An initial state s0(初始状态)
  • Actions A(s) in each state(每个状态下的行动)
  • Transition model Result(s,a)(移动模型——移动方式)
  • A goal test G(s)(目标状态)
  • Action cost c(s,a,s’)(行动损失)
    +1 per step; -10 food; -500 win; +500 die; -200 eat ghost

EXAMPLE——Traveling in Romania
分析Search问题:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值