[目标检测]-------mosaic、mixup、cutout、cutmix数据增强比较

本文对比了Mosaic、Mixup、Cutout和Cutmix四种数据增强方法。Mosaic通过拼接四张图片增加背景多样性,Cutout随机切掉部分填充0,Cutmix则是切割并填充其他样本数据,Mixup按比例混合图像。这些方法能提高训练效率,增强模型定位和分类能力。Mosaic是CutMix的改进版,涉及四张图片的拼接与组合,增加了BN计算的多样性。
摘要由CSDN通过智能技术生成

数据增强简介和比较

Mosaic数据增强:主要思想是将四张图片进行随机裁剪,再拼接到一张图上作为训练数据。这样做的好处是丰富了图片的背景,并且四张图片拼接在一起变相地提高了batch_size,在进行batch normalization的时候也会计算四张图片,所以对本身batch_size不是很依赖,单块GPU就可以训练YOLOV4。
Mixup:将随机的两张样本按比例混合,分类的结果按比例分配;
Cutout:随机的将样本中的部分区域cut掉,并且填充0像素值,分类的结果不变;
CutMix:就是将一部分区域cut掉但不填充0像素而是随机填充训练集中的其他数据的区域像素值,分类结果按一定的比例分配。

上述三种数据增强的区别:
cutout和cutmix就是填充区域像素值的区别;
mixup和cutmix是混合两种样本方式上的区别:
mixup是将两张图按比例进行插值来混合样本,cutmix是采用cut部分区域再补丁的形式去混合图像,不会有图像混合后不自然的情形。

优点
<1>在训练过程中不会出现非信息像素,从而能够提高训练效率;
<2>保

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小飞龙程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值