一、基本概念
SNV是一种通过调整数据的尺度,使其具有统一的量纲和范围的方法,“正态标准变化”和“Z-Score”在本质上是相同的。在光谱分析中,SNV通过对光谱数据进行标准正态变换,使数据更加符合正态分布,从而增强数据的稳定性,这是论文中常见的光谱预处理方法,也是主成分分析前的数据常用的归一化操作。
二、原理与步骤
SNV算法的原理是将原始数据中每个变量减去其均值,然后除以标准差,使得样本在所有变量上的总体分布均值为0,方差为1。具体步骤如下:
- 计算每个样本的平均值:对于给定的光谱数据,计算所有样本的每个波长位置上的平均反射值(或吸光度值)。
- 去除均值偏移:将每个样本的光谱数据减去其对应波长位置上的平均值,以去除样本的均值偏移。
- 计算每个样本的标准偏差:对于减去平均值后的光谱数据,计算每个波长位置上的标准偏差。
- 标准化处理:将每个样本的光谱数据除以其对应波长位置上的标准偏差,以对光谱进行标准化处理,使得每个波长上的光谱变化范围是相似的。
三、数学公式
对于第i个样本的第j个变量,其SNV变换后的值
可以计算为:
其中,为第j个变量在所有样本上的均值,
为第j个变量在所有样本上的标准差。
四、应用与优势
SNV预处理是一种常用的高光谱数据预处理方法,用于消除光谱数据中的散射效应和基线漂移等干扰因素,提高数据的建模性能。通过SNV变换,不仅可以去除光谱数据中的杂质和噪声,还能够将不同样本之间的差异缩小到相同的范围内,从而更好地进行比较和分析。SNV适用于大多数光谱数据,尤其是在面对样本之间存在强烈的强度差异或仪器响应不均匀的情况下。
在实际应用中,SNV常常与其他预处理技术如一阶导数(1st derivative)、二阶导数(2nd derivative)或者多元散射校正(Multiplicative Scatter Correction, MSC)结合使用,以进一步提升光谱的解析性能。例如,可以先用SNV消除强度差异,再用MSC处理基线漂移。
六、Matlab代码参考
function snvSpectra = snv(input_data)
% 计算每个样本的均值和标准差
meanSpectra = mean(input_data, 2);
stdSpectra = std(input_data, 0, 2);
% 计算SNV预处理后的光谱数据
snvSpectra = zeros(size(input_data));
for i = 1:size(input_data, 1)
snvSpectra(i, :) = (input_data(i, :) - meanSpectra(i)) ./ stdSpectra(i);
end
end
在这个函数中,input_data
是输入的光谱数据矩阵,其中每一行代表一个样本,每一列代表一个特征(或波长点)的值。函数首先计算每个样本的均值和标准差,然后对每个样本进行SNV变换,即减去均值并除以标准差。最后,返回变换后的光谱数据矩阵snvSpectra
。