底层逻辑之-自然数“e”的数学来源

0.简介:

自然对数e是数学中的一个重要常数,约等于2.718。它最初由数学家约翰·纳皮尔斯(John Napiers)在研究复利的过程中发现,并由欧拉(Leonhard Euler)将其推广并命名为“e”(因此其又叫欧拉数),取自于德语“Exponential”(指数)的首字母。e在数学、物理、工程、生物学等多个领域都有着广泛的应用,是描述自然界中许多现象的关键参数。

1.对数“e”是如何设计的?

假如我们处于一个不知道自然对数e的世界,现在我们要根据基础知识,对函数a^{x}关于x进行求导

即:\frac{\partial }{\partial x}a^{x}=lim_{\Delta x\rightarrow 0}\frac{a^{x+\Delta x}-a^{x}}{\Delta x}

\Delta x记为h,变化为:

\frac{\partial }{\partial x}a^{x}=lim_{h\rightarrow 0}\frac{a^{x+h}-a^{x}}{h}

 \frac{\partial }{\partial x}a^{x}=lim_{h\rightarrow 0}\frac{a^{x}a^{h}-a^{x}}{h}

式中,a^x是一个确定的值,将公式写为:

\frac{\partial }{\partial x}a^{x}=a^{x}\cdot lim_{h\rightarrow 0}\frac{a^{h}-1}{h}                (式1)

对于极限:lim_{h\rightarrow 0}\frac{a^{h}-1}{h},我们没有办法办法进行进一步计算,不妨假设a是一个特定的值,存在

lim_{h\rightarrow 0}\frac{a^{h}-1}{h}=1     此时:\frac{\partial }{\partial x}a^{x}=a^{x}

化简:lim_{h\rightarrow 0}a^{h}=lim_{h\rightarrow 0}h+1

得到a的定义式:

a=lim_{h\rightarrow 0}(1+h)^{\frac{1}{h}}=lim_{h\rightarrow 0}(1+h)^{\infty }               (式2)

对于式2,我们是无法直接计算的,但是可以通过二项式展开进行逼近:

lim_{h\rightarrow 0}(1+h)^{\frac{1}{h}}\approx 1+\frac{1}{h}h+\frac{\frac{1}{h}(\frac{1}{h}-1)}{2}h^2+\frac{\frac{1}{h}(\frac{1}{h}-1)(\frac{1}{h}-2)}{6}h^3...

注:二项式(Binomial expansion)定理:(a+b)^{n}=\sum_{r=0}^{n}\frac{n!}{r!(n-r)!}a^{n-r}b^{r}

对于任意可数正数c,有lim_{h \to 0} \frac{1}{h}-c= \frac{1}{h},化简有:

lim_{h\rightarrow 0}(1+h)^{\frac{1}{h}}\approx 1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}...                  (式3)

我们仅对前5项求和:

a=lim_{h\rightarrow 0}(1+h)^{\frac{1}{h}}\approx 2.7166 

这是一个很神奇的数,前人称之为自然对数“e”(约等于2.718)。在a^x中,仅x为e时,其导数是其本身,根据其推导过程:式2是其定义式,定义式的二次项展开可以化简为其的泰勒展开式(式3

2.e在对数函数中的作用

构造了自然对数e后,式1的求导就有了新视角,对于式1:

\frac{\partial }{\partial x}a^{x}=a^{x}\cdot lim_{h\rightarrow 0}\frac{a^{h}-1}{h}

a^h=e^{h\cdot lna}

\frac{\partial }{\partial x}a^{x}=a^{x}\cdot lim_{h\rightarrow 0}\frac{e^{h\cdot lna}-1}{h}

已知\frac{\partial }{\partial x} e^x=e^x,即:\frac{\partial }{\partial x} e^{f(x)}=f(x) e^{f(x)}

e^{h\cdot lna}进行关于点x_0进行泰勒展开,这里的h即\Delta x=x-x_0

e^{h\cdot lna}=1+\frac{h \cdot lna \cdot e^{h\cdot lna}}{1!}+\frac{(h \cdot lna \cdot e^{h\cdot lna})^2 }{2!}+...

注:泰勒公式P_n(x;x_0)=\sum_{i=0}^{n}\frac{f^{i}(x_0)}{i!}\cdot (x-x_0)^i

代入式1得

\frac{\partial }{\partial x}a^{x}=a^{x}\cdot lim_{h\rightarrow 0}\frac{1+\frac{h \cdot lna \cdot e^{h\cdot lna}}{1!}+\frac{(h \cdot lna \cdot e^{h\cdot lna})^2 }{2!}+...-1}{h}

\frac{\partial }{\partial x}a^{x}=a^{x}\cdot lim_{h\rightarrow 0} lna \cdot a^x+ h\cdot (lna \cdot a^x)^2+...

h趋近于0,将带h的项消掉后

可得数学书上的对数求导公式:\frac{\partial }{\partial x}a^{x}=lna \cdot a^x

3.总结

自然对数 e 是数学中的核心常数,其导数和指数函数的特性使其成为数学分析中的基础工具。通过定义 𝑒为满足的常数,我们可以构建许多数学公式,并通过泰勒展开等方法进一步理解其在实际问题中的广泛应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值