0.简介:
自然对数e是数学中的一个重要常数,约等于2.718。它最初由数学家约翰·纳皮尔斯(John Napiers)在研究复利的过程中发现,并由欧拉(Leonhard Euler)将其推广并命名为“e”(因此其又叫欧拉数),取自于德语“Exponential”(指数)的首字母。e在数学、物理、工程、生物学等多个领域都有着广泛的应用,是描述自然界中许多现象的关键参数。
1.对数“e”是如何设计的?
假如我们处于一个不知道自然对数e的世界,现在我们要根据基础知识,对函数关于x进行求导
即:
将记为h,变化为:
式中,是一个确定的值,将公式写为:
(式1)
对于极限:,我们没有办法办法进行进一步计算,不妨假设
是一个特定的值,存在
此时:
化简:
得到a的定义式:
(式2)
对于式2,我们是无法直接计算的,但是可以通过二项式展开进行逼近:
注:二项式(Binomial expansion)定理:
对于任意可数正数c,有,化简有:
(式3)
我们仅对前5项求和:
这是一个很神奇的数,前人称之为自然对数“e”(约等于2.718)。在中,仅x为e时,其导数是其本身,根据其推导过程:式2是其定义式,定义式的二次项展开可以化简为其的泰勒展开式(式3)
2.e在对数函数中的作用
构造了自然对数e后,式1的求导就有了新视角,对于式1:
令
已知,即:
对进行关于点
进行泰勒展开,这里的h即
注:泰勒公式
代入式1得
h趋近于0,将带h的项消掉后
可得数学书上的对数求导公式:
3.总结
自然对数 e 是数学中的核心常数,其导数和指数函数的特性使其成为数学分析中的基础工具。通过定义 𝑒为满足的常数,我们可以构建许多数学公式,并通过泰勒展开等方法进一步理解其在实际问题中的广泛应用。