【第2篇】VGG——引用最多的论文

本文深入研究了卷积网络深度对大规模图像识别准确性的影响,提出使用小尺寸滤波器(3x3)增加网络深度,达到16-19层,显著提升了准确率。在ILSVRC 2014挑战中,基于此的模型在分类和定位任务上取得优异成绩。此外,研究表明,这些深度表示在其他数据集上也具有良好的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

论文地址
在这项工作中,我们研究了卷积网络深度在大规模的图像识别环境下对准确性的影响。我们的主要贡献是使用非常小的(3×3)卷积滤波器架构对网络深度的增加进行了全面评估,这表明通过将深度推到16-19加权层可以实现对现有技术配置的显著改进。这些发现是我们的ImageNet Challenge 2014提交的基础,我们的团队在定位和分类过程中分别获得了第一名和第二名。我们还表明,我们的表示对于其他数据集泛化的很好,在其它数据集上取得了最好的结果。我们使我们的两个性能最好的ConvNet模型可公开获得,以便进一步研究计算机视觉中深度视觉表示的使用。
在这里插入图片描述

1 引言

卷积网络(ConvNets)近来在大规模图像和视频识别方面取得了巨大成功(Krizhevsky等&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值