AI芯片公司,架构、编译两手都要硬!搭载清华最新深度学习编译研究成果的芯片已商用-1

清微智能采用清华大学的深度学习编译技术,提升了其AI芯片TX510的处理速度,尤其是在人脸识别场景下速度翻倍。该技术解决了神经网络处理器编译优化的难题,实现计算性能的显著提升,已被应用于实际产品中。
摘要由CSDN通过智能技术生成

 

 

 

2016 年,第一颗基于可重构计算的人工智能芯片诞生于清华。该成果曾发表在《IEEE 固态电路期刊》,《麻省理工科技评论》也报道过该芯片。

 

这是清华可重构计算实验室 “十年磨一剑” 的成果。2006 年起,清华开始研究可重构计算并成立实验室。 

 

2018 年,该实验室开始走向产品化,并成立清微智能公司。两年来,公司已在语音识别、视觉识别等领域研发出规模化应用产品,并和阿里巴巴等互联网巨头建立合作。如今,清微智能将最新技术运用于 AI 编译工具链中,并服务于其量产芯片 TX5 系列中,通过编译优化,全球首款多模态智能计算芯片 TX510 用于人脸识别时,其处理速度能够提升一倍。

 

DeepTech 近日联系到清微智能首席科学家、清华大学微电子与纳电子学系教授尹首一,就该公司的主要产品、和他本人近日以通讯作者发表的新论文进行了深度交流。

 

自 2018 年以来,清微智能针对终端产品的语音和视觉两大应用场景,量产出货两款芯片产品:超低功耗的智能语音 SoC 芯片 TX210,已应用至多款 TWS 耳机、电子产品及多种智能家居产品中;TX510 芯片于 2020 年 7 月实现量产,在金融支付、智能安防、工业机器人、航空等领域也已分批交付客户,出货量已超十万片,并承担多个国家重大项目的建设。

 

 

图|TX 510 应用领域

 

以清微智能的 TX510 智能视觉芯片系列为例,该芯片的休眠功耗为 10uW、支持中断唤醒,冷启动下的人脸检测识别时间小于 100ms,典型工作功耗为 350mW,算力达 1.2T (Int8)/9.6T (Binary),AI 有效能效比达 5.6TOPS/W。

 

TX510 还拥有可重构 AI 引擎,其支持 AlexNet、GoogleNet、ResNet、VGG、Faster-RCNN、YOLO、SSD、FCN 和 SegNet 等主流神经网络,可实现人脸识别、物体识别和手势识别等功能,适用于 AIoT、智能安防、智能家居、智能穿戴、智能制造等领域。

 

TX510 内置 3D 引擎,支持 3D 结构光、TOF(Time of flight,飞行时间)和立体视觉,误识率千万分之一的情况下识别率大于 90%。

 

在接口方面,TX510 支持市面上主流的视频接口、存储接口和通用接口,可保证产品兼容性。

 

尽管从硬件层面芯片性能已经取得了较大进步,但尹首一告诉 DeepTech,业界向来有一个共识,光有芯片架构还不够,编译工具和开发工具等软硬件体系也必须做好。否则,很难完全把硬件功能的优势发挥出来。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值