pandas基础操作

易错点1:

import pandas as pd
data=pd.read_csv("dogNames2.csv")
print(data)
data[800<data["Count_AnimalName"]<10000] 
print(data[800<data["Count_AnimalName"]<10000])

报错: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

修改为:

data[(800<data["Count_AnimalName"])&(data["Count_AnimalName"]<1000)]
print(data[(800<data["Count_AnimalName"])&(data["Count_AnimalName"]<1000)])

1.缺失数据的处理 

x = [ {"one":1,"two":2},{"one":5,"two":10,"three":15},{"one":5,"two":10,"three":15}]
df = pd.DataFrame(x)
print(df)
# print("mean111\n",df.mean())
# print(df.fillna(df.mean()))

#操作某一列改变数值
print(df["three"].mean())
df["three"]=df["three"].fillna(df["three"].mean())
print(df)

处理为0的数据

t[t==0]=np.nan

转化为nan,可以在数组中进行运算,不影响,不进行运算。(numpy中nan做运算都为nan)

两个代码可以细品:

temp_actors_list = df["Actors"].str.split(", ").tolist()
temp_actors_list打印出来:

[['Chris Pratt', 'Vin Diesel', 'Bradley Cooper', 'Zoe Saldana'], ['Noomi Rapace', 'Logan Marshall-Green', 'Michael Fassbender', 'Charlize Theron'],
1.actors_list = [i for j in temp_actors_list for i in j]  将temp_actors_list平铺.

['Chris Pratt', 'Vin Diesel', 'Bradley Cooper', 'Zoe Saldana', 'Noomi Rapace', 'Logan Marshall-Green'...]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值