论文阅读:Scalable One-Pass Self-Representation Learning for Hyperspectral Band Selection

本文介绍了Scalable One-Pass Self-Representation Learning(SOP-SRL)方法,用于高光谱图像的带选择。文章主要探讨了3个方面:1)使用缓存向量进行连续性保留;2)引入基于图的正则化保持局部流形结构;3)提出一种可扩展的SRL模型,通过样本质量和局部相似性增强波段选择效果。通过迭代优化和动态调整图结构,解决了不完整带的动态样本处理问题。
摘要由CSDN通过智能技术生成

Scalable One-Pass Self-Representation Learning for Hyperspectral Band Selection

本文主要干了三件事:

1、首先利用权值向量v对t时刻不同样本的重构误差进行线性组合。
2、基于图的正则化矩阵tS,用于从保持局部流形结构的角度检查所选波段的代表性。
3、使用缓存矢量q去捕获样本矩阵之间的一致性并执行频带选择。

创新点:

1、设计了缓存矢量,因此可以保留样本子集之间的连续性。提出了一种有效的算法来求解非凸和非光滑的SOP-SRL模型。
2、提出了一种可扩展的SRL,为每个样本的损失函数分配适当的权重,以强调样本中的差异。 此外,还添加了基于图的正则化项,以通过测量由选定频段构建的样本之间的局部相似性来增强频段的代表性。

SRL With Band Selection

对于给定的样本矩阵X, SRL将每个频带表示为其他频带(包括自身)的线性组合
在这里插入图片描述
其中变量W∈Rb×b和E∈Rn×b分别是表示系数和残差矩阵。 矩阵E的第i行代表训练样本Xi的重构误差(RE)。 为了避免在模型(3)中获得明显解(可理解为齐次线性方程, 总是有零解w≡0.基本是这个意思)(例如W = I和E = 0),必须对W进行正则化。因此,SRL的正式定义可以表示为:
在这里插入图片描述
第一项是损失函数,如最小二乘或平方损失函数,以最小化RE。第二项是避免常规解和引导带选择的正则化项。低秩约束和行稀疏约束是两种常见的正则化项。通过交叉验证确定的正参数τ用于实现第一项和第二项之间的平衡。
波段选择可以使用各种损失函数和正则化项的组合来实现。与平方损失函数相比,最小平方损失函数对异常值具有较好的鲁棒性。此外,当增加主要检查波段之间关系的低秩约束时,需要增加聚类,如[31][33]中所做的那样,增加了计算复杂度,使波段选择模型陷入麻烦。因此,由最小二乘损失函数和行稀疏约束组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值