随机过程:套利定理

套利定理(the Arbitrage Theorem)

写在前面

这是我这学期随机过程教材上的布朗运动中的一节。这个套利定理(不太清楚中文叫啥)应该是金融数学中比较基础的定理,证明部分用到了我上学期凸分析的部分知识,也当作一个回顾。

Setting

考虑一次实验,总共有 n n n个人可以在实验之前进行下注 x i ∈ R , i ∈ { 1 , 2 , ⋯   , n } x_i \in \mathbf{R}, i \in \{1, 2, \cdots, n\} xiR,i{1,2,,n}。实验的结果有 m m m种,实验每种结果对于第 i i i个人的收益率为 r i ( j ) , j ∈ { 1 , 2 , ⋯   , m } r_i(j), j \in \{1, 2, \cdots, m\} ri(j),j{1,2,,m}。那么 n n n个人下注的总收益为
total return = ∑ i = 1 n x i r i ( j ) , ∀ j ∈ { 1 , 2 , ⋯   , m } \begin{equation} \text{total return} = \sum_{i=1}^n x_i r_i(j), \quad \forall j \in \{1, 2, \cdots, m \} \end{equation} total return=i=1nxiri(j),j{1,2,,m}

套利定理(the Arbitrage Theorem)

在上述setting下,以下情况只能一种存在:

  1. 存在一个概率向量 p = ( p 1 , p 2 , ⋯   , p m ) \mathbf{p} = (p_1, p_2, \cdots, p_m) p=(p1,p2,,pm)使得
    ∑ j = 1 m p j ⋅ r i ( j ) = 0 , ∀ i ∈ { 1 , 2 , ⋯   , n } \begin{equation} \sum_{j=1}^m p_j \cdot r_i(j) = 0, \quad \forall i \in \{1, 2, \cdots, n \} \end{equation} j=1mpjri(j)=0,i{1,2,,n}
  2. 存在一种下注方案 x = ( x 1 , x 2 , ⋯   , x n ) \mathbf{x} = (x_1, x_2, \cdots, x_n) x=(x1,x2,,xn) 使得总收益总大于0,即
    ∑ i = 1 n x i ⋅ r i ( j ) > 0 , ∀ j ∈ { 1 , 2 , ⋯   , m } \begin{equation} \sum_{i=1}^n x_i \cdot r_i(j) > 0, \quad \forall j \in \{1, 2, \cdots, m \} \end{equation} i=1nxiri(j)>0,j{1,2,,m}

证明

证明非常简单,只需要用到一个Gordan定理就行了。

Gordan定理

A ∈ R m × n \mathbf{A} \in \mathbf{R}^{m\times n} ARm×n,则以下两个命题只能有一个为真:

  1. ∃   x ∈ R n ,使得  A x < 0 \exists~\mathbf{x} \in \mathbf{R}^n,使得 ~\mathbf{Ax} < 0  xRn,使得 Ax<0
  2. ∃   y ≠ 0 , y ≥ 0 ,使得 A t y = 0 \exist ~ \mathbf{y} \neq 0, \mathbf{y} \geq 0,使得\mathbf{A^ty} = 0  y=0,y0,使得Aty=0

Gordan定理是Farkas引理的一个推论,其证明的核心思想是将上述两个系统构造成Farkas引理中的形式。

套利定理的证明

套利定理中的表述 ( 2 ) ( 3 ) (2)(3) (2)(3)用矩阵语言表示就是:

  1. R p = 0 , p ≥ 0 , p ≠ 0 \mathbf{Rp}=\mathbf{0}, \mathbf{p} \geq 0, \mathbf{p} \neq 0 Rp=0,p0,p=0
  2. R t x > 0 \mathbf{R^tx}>0 Rtx>0

其中 p , x \mathbf{p, x} p,x是列向量; R \mathbf{R} R 是收益率矩阵,具体形式为
R = [ r 1 ( 1 ) r 1 ( 2 ) ⋯ r 1 ( m ) r 2 ( 1 ) r 2 ( 2 ) ⋯ r 2 ( m ) ⋮ ⋮ ⋮ r n ( 1 ) r n ( 2 ) ⋯ r n ( m ) ] \mathbf{R} = \begin{bmatrix} r_1(1) & r_1(2) & \cdots & r_1(m) \\ r_2(1) & r_2(2) & \cdots & r_2(m) \\ \vdots & \vdots & &\vdots \\ r_n(1) & r_n(2) & \cdots & r_n(m) \end{bmatrix} R= r1(1)r2(1)rn(1)r1(2)r2(2)rn(2)r1(m)r2(m)rn(m)
现在,等式和不等式两边同时乘以 − 1 -1 1,得:

  1. ( − R ) p = 0 , p ≥ 0 , p ≠ 0 (-\mathbf{R)p}=\mathbf{0}, \mathbf{p} \geq 0, \mathbf{p} \neq 0 (R)p=0,p0,p=0
  2. ( − R t ) x < 0 (-\mathbf{R^t)x} < 0 (Rt)x<0

刚好是Gordan定理的形式。因此 ( 2 ) ( 3 ) (2)(3) (2)(3)只能一个成立。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值