基于LSTM与Transfomer的股票预测模型

本文介绍了使用LSTM模型预测股票开盘价的项目,数据来源于2016年至2019年中国平安股票,通过时间序列分析,训练LSTM网络并取得较好的预测效果,MSELoss降至0.8左右,测试集准确率高达96%。同时,尝试了Transformer模型,但表现不如LSTM。项目展示了LSTM在长序列预测中的优势,并提供了模型训练和预测的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于LSTM与Transfomer的股票预测模型

1 项目介绍

股票行情是引导交易市场变化的一大重要因素,若能够掌握股票行情的走势,则对于个人和企业的投资都有巨大的帮助。然而,股票走势会受到多方因素的影响,因此难以从影响因素入手定量地进行衡量。但如今,借助于机器学习,可以通过搭建网络,学习一定规模的股票数据,通过网络训练,获取一个能够较为准确地预测股票行情的模型,很大程度地帮助我们掌握股票的走势。本项目便搭建了**LSTM(长短期记忆网络)**成功地预测了股票的走势。

首先在数据集方面,我们选择上证000001号,中国平安股票(编号SZ_000001)数据集采用2016.01.01-2019.12.31股票数据,数据内容包括当天日期,开盘价,收盘价,最高价,最低价,交易量,换手率。数据集按照0.1比例分割产生测试集。训练过程以第T-99到T天数据作为训练输入,预测第T+1天该股票开盘价。(此处特别感谢Tushare提供的股票日数据集,欢迎大家多多支持)

训练模型及结果方面,我们首先采用了LSTM(长短期记忆网络),它相比传统的神经网络能够保持上下文信息,更有利于股票预测模型基于原先的行情,预测未来的行情。LSTM网络帮助我们得到了很好的拟合结果,loss很快趋于0。之后,我们又采用比LSTM模型更新提出的Transformer Encoder部分进行测试。但发现,结果并没有LSTM优越,曲线拟合的误差较大,并且loss的下降较慢。因此本项目,重点介绍LSTM模型预测股票行情的实现思路。

2 LSTM模型原理

2.1 时间序列模型

时间序列模型:时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。

2.1 从RNN到LSTM

RNN:递归神经网络RNN每一次隐含层的计算结果都与当前输入以及上一次的隐含层结果相关。通过这种方法,RNN的计算结果便具备了记忆之前几次结果的特点。其中,为输入层,o为输出层,s为隐含层,而t指第几次的计算,V,W,U为权重,第t次隐含层状态如下公式所示:
S t = f ( U ∗ X t + W ∗ S t − 1 )   ( 1 ) St = f(U*Xt + W*St-1) (1) St=f(UXt+WSt1) 
在这里插入图片描述

可见,通过RNN模型想要当前隐含层状态与前n次相关,需要增大计算量,复杂度呈指数级增长。然而采用LSTM网络可解决这一问题。

LSTM(长短期记忆网络):

LSTM是一种特殊的RNN,它主要是Eileen解决长序列训练过程中的梯度消失和梯度爆炸问题。相比RNN,LSTM更能够在长的序列中又更好的表现。

在这里插入图片描述

LSTM拥有两个传输状态: c t c^{t} ct在 (cell state), h t h^{t} ht(hidden state),其中 c t c^{t}

### LSTMTransformer 模型在预测序列长度方面优缺点 #### LSTM 的优点 LSTM(长短时记忆网络)通过引入门控机制来解决传统 RNN 中长期依赖问题。这种结构使得 LSTM 能够有效地捕捉长时间间隔内的依赖关系,从而适用于处理较长的输入序列[^1]。 - **有效捕获长距离依赖**:由于其内部的记忆单元设计,LSTM 可以很好地记住过去的信息并将其传递给未来的时间步。 - **适合中小规模数据集**:当可用的数据量不是特别大时,LSTM 表现良好,并且参数数量相对较少,在资源有限的情况下具有优势。 然而,随着序列变得更长,LSTM 存在一个主要局限: - **计算复杂度高**:对于非常长的序列来说,每一步都需要前向传播整个历史状态,这会带来较高的时间开销以及内存占用。 #### Transformer 的优点 相比之下,Transformers 利用了自注意力机制来自适应地加权不同位置之间的关联程度,而不需要像 LSTMs 那样顺序遍历每一个 token 来构建上下文表示。因此, - **并行化能力强**:因为可以一次性处理整句甚至多句话的内容而不必按序执行操作,所以 Transformers 更容易实现高效的大批量训练过程。 - **全局视角建模能力更强**:借助于 multi-head attention 结构,能够同时关注到句子中的多个部分及其相互作用,有助于理解复杂的语义模式。 但是,这也带来了某些挑战: - **对超参敏感性强**:包括层数、隐藏维度大小等因素的选择都会显著影响最终效果;而且较大的模型尺寸意味着更多的 GPU/TPU 计算需求。 - **难以应对极短文本**:虽然理论上支持任意长度输入,但对于极其简短或碎片化的片段可能不如基于循环架构的方法那样直观易懂。 综上所述,如果目标是处理较短至中等长度的序列,则可以选择 LSTM 或者其他变体形式如 GRU 等;而对于那些涉及大量长程依存性的 NLP 应用场景而言,Transformer 显然是更好的选项之一[^2]。 ```python import torch.nn as nn class LSTMModel(nn.Module): def __init__(self, input_size=512, hidden_size=256, num_layers=2): super(LSTMModel, self).__init__() self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) def forward(self, x): out, _ = self.lstm(x) return out class TransformerModel(nn.Module): def __init__(self, d_model=512, nhead=8, num_encoder_layers=6): super(TransformerModel, self).__init__() encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers) def forward(self, src): output = self.transformer_encoder(src) return output ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值