今天凌晨,OpenAI 正式宣布推出一项名为 Tasks 的测试版功能。
无论是一次性提醒还是重复性任务,现在你只需要向 ChatGPT 说明需求和时间,它就能实现自动化处理。比方说,你可以设置每天早晨 7 点获取天气预报,或定时提醒遛狗等日常事项。
看到这,有没有觉得很熟悉。没错,类似于你手机上的 Siri,但在 ChatGPT 的加持下,Tasks 的性能显然要更强大。
OpenAI 研究工程师 Karina Nguyen 也向我们展示了几个实用案例。
你可以让 ChatGPT 每天查看股市行情,或是委托它定期在 ChatGPT Canvas 创作科幻故事,并将这些故事发送到你的邮箱里。
如果你想学英语,你可以让它每晚督促你背单词,此外,你还能让 ChatGPT 为你总结最新的 AI 新闻。面试考试党也别急,它也能根据你的设置安排化身出题官。
我试着利用这项功能提醒我定时补充水分,实际体验下来,有定时闹钟那味了。
Tasks 功能现以测试版形式向 Plus、Pro 和 Teams 用户开放,后续将覆盖 ChatGPT 所有用户。
不过,OpenAI 尚未明确该功能免费开放的具体时间。鉴于 OpenAI 过往的画饼史,估计还有一段时间才会开放。
要启用这项功能,付费用户需要在 ChatGPT 的模型选择器中选择「4o with scheduled tasks」。
所有任务均可在对话界面或网页版个人档案的 Tasks 专区进行管理,随时轻松修改或取消已设置的任务。
任务完成后,系统会通过网页端、桌面端和移动端向用户推送提醒。
每位用户可同时运行最多 10 个任务。
我们也从 OpenAI 官网上扒到一些值得注意的细节。
首先,Tasks 功能已支持 ChatGPT 网页版、iOS、Android 和 MacOS 平台,但 Windows 版本将于第一季度晚些时候推出。
无论是定时触发(一次性或重复)还是通过用户界面手动触发,ChatGPT 都会执行预设任务,且不受用户在线状态影响,直到用户将收到推送通知或邮件提醒。
对于这项新功能,用户反响不一。
除了一片吐槽声,也有不少用户推测 Tasks 可能是 OpenAI Operator 的雏形。X 用户 @kimmonismus 就认为:「信息似乎是正确的,一切都在为『Operator』的发布做准备。」
与此同时,网友 Tibor Blaho 也发现 OpenAI 似乎正在开发代号为「Caterpillar」的功能。
它可以与 Tasks 集成,并允许 ChatGPT 搜索特定信息、分析问题、总结数据、浏览网站和访问文档——用户在任务完成时会收到通知。
给不熟悉的朋友补充一些背景知识。
根据外媒的爆料,Operator 是 OpenAI 计划于本月晚些时候推出的一款全新 AI Agent 产品,预计能够自动执行各种复杂操作,包括编写代码、预订旅行、自动电商购物等。
并且,与传统聊天机器人不同,Operator 甚至能根据用户的需求实时反馈调整其行为。
不过,此前有消息称,由于 Operator 在执行任务中用到的截图内容可能被恶意利用,导致所谓的「提示注入攻击」,存在严重的安全漏洞和风险,故而或将延迟推出。
实际上,在 2024 年开发者日上,OpenAI CEO Sam Altman 曾表示 2025 年将会是 AI Agent 的元年。
首席产品官 Kevin Weil 在 Reddit AMA 中也提到,ChatGPT 主动向用户发送消息也将成为 2025 年的重要特征。
截至发稿前,外媒 VentureBeat 也就 Tasks 和 Operator 的相关事项联系了 OpenAI。
但该公司拒绝回答这个问题,只表示 Tasks 「将是使 ChatGPT 成为更有用的 AI 伴侣的重要一步」。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。