通用人工智能(AGI,Artificial General Intelligence)是指一种智能系统,其智能水平与人类相似,能够在广泛的任务和领域中表现出类似于人类的推理能力和智慧。AGI的目标在于构建一个能够像人类一样执行各种认知任务的智能系统,具备高度的灵活性和自适应性,能够在多样化的任务和环境中学习、改进,并展现出卓越的智能表现。
一、核心特征
AGI的核心特征在于其通用性,即系统能够在各种不同的任务中表现出高水平的智能。这种智能不仅仅局限于特定的应用场景,如语音识别或图像分类,而是能够跨领域应用,处理复杂且开放的问题。为了实现这一目标,AGI需要具备跨领域学习能力,能够在不同领域获取知识并灵活运用;同时,还需要具备自我意识与情感理解能力,以便更好地与人类进行互动;此外,解决复杂问题的能力、主动学习与适应性,以及创造性思维,都是AGI不可或缺的核心能力。
二、关键技术与方法
实现AGI需要发展一系列关键技术和方法。其中,机器学习和深度学习是实现AGI的基础,它们通过大量数据和模型训练,使系统具备识别和理解图像、语言等能力。
自然语言处理技术的进步,使得系统能够理解和生成自然语言,从而与人类进行有效沟通。知识表示与推理技术则使系统能够存储和利用知识进行推理和决策,进一步提升其智能水平。
三、应用领域与挑战
AGI的应用领域非常广泛,包括但不限于自动驾驶汽车、智能助理、医学诊断、金融分析等。这些应用将极大地提高生产效率、改善生活质量,并解决许多复杂问题。然而,实现AGI也面临着诸多挑战。
首先,需要大量的计算资源和数据来训练和优化AGI模型。其次,如何实现系统的适应性和灵活性,使其能够在不同的任务和领域中表现出类似于人类的智能,仍然是一个研究难题。此外,确保AGI的安全性和道德性也是一个重要而复杂的问题,需要研究人员在算法设计、模型训练以及应用部署等方面进行深入思考和探索。
四、发展历程与未来展望
自20世纪中叶以来,人工智能经历了多次高潮与低谷。从最初的专家系统到如今的深度学习技术,人工智能在不断地发展和进步。然而,要实现真正的AGI,还需要克服许多未解难题。近年来,随着计算能力的提升以及神经网络模型的创新,如GPT-3等大型模型的出现,人们对实现AGI的期望再次高涨。然而,从狭域AI到通用AI之间仍有大量挑战需要克服。
未来,随着人工智能技术的不断发展,我们有理由相信AGI的实现将不再是遥不可及的梦想。然而,在这个过程中,我们必须保持谨慎和审慎的态度,不断审视技术发展的方向,确保我们的努力朝着有益于全人类的方向发展。同时,我们还需要加强跨学科合作与创新方法的研究,以推动AGI技术的快速发展和广泛应用。
综上,AGI作为一种具有通用性的人工智能系统,其实现将标志着人工智能技术的重大突破和进步。虽然面临诸多挑战和难题,但随着科技的不断进步和人类的不断努力,我们有理由相信AGI的实现将指日可待。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。