对于想深入了解AGI大模型的人,必须要学习和理解如下几个概念术语,掌握了如下术语,你可以从容应和解读市面上大模型。
1、AGI是什么
答:AGI的英文全称是 Artificial General Intelligence,即生成式AI。人工智能如果按语言模型来分类,一种叫辨别式AI,典型应用是搜索。搜索就是根据你提的需求,看一个个网页跟你的需求匹配不匹配,主要是在辨别;另一种是生成式AI模型,你给出一个提示词,模型根据提示词,输出你想要的内容。
2、LLM是什么
答: 英文全称Large Language Model,即大模型。通俗来讲,大模型就是神经网络算法+大量的语料数据进行训练,得到一个通用的模型,这个模型具备了人类思考和推理的能力。
3、GPT是什么
答:G表示Generative(生成式),P表示Pre-trained(预训练),T表示Transformer(一种基于神经网络的算法),GPT是一种基于Transformer(转换器)的语言模型,通过大规模的自然语言数据训练,机器可以掌握和“学习”自然的语言表述方式和规律,从而得到一种大模型。目前说的GPT通常指一种大模型。
4、Chatgpt是什么
答:ChatGPT是一个由OpenAI开发的人工智能聊天机器人程序,全称为“Chat Generative Pre-trained Transformer”.通俗来讲,是OpenAI公司开发的一款基于对话式的大模型。
5、什么是模型参数,模型参数128B表示什么意思
答:大模型的参数(也叫权值)指的是大模型中所有具有可学习参数的算法中包含参数的总和。大模型主要是由神经网络+语料数据训练而产出。神经网络模型中,神经元的结构是由输入、激活函数、输出组成的,每个神经元激活函数包含w和b两个,w和b统称为神经网络的参数。大模型的参数指的就是模型中w和b共有多少个,128B参数表示模型总共有1280亿个w+b参数。模型参数越大,表示大模型学习和推理能力更强。
6、Token是什么
答: Token通常用来表示文本数据中的一个单元。在不同的语境下,一个token可能代表一个 字、一个词,或者是一个句子。在英文中,一个token通常是一个词或者是标点符号。在一些汉语处理系统中,一个token可能是一个字,也可能是一个词。Token是处理理和理解文本数据的基本单元。
7、Prompt是什么
答: 通俗来讲,Prompt是人与大模型交流的的语言。展开来讲,Prompt是一种通过设计特定的提示词或句子,用来引导大模型生成更符合用户意图的输出内容。在与大模型对话中,Prompt扮演着至关重要的角色——引导AI理解和执行我们的指令。简单的Prompt举例:“请使用python语言生成一段闰年判断示例代码”。
8、Fine-Tuning是什么
答: Fine-tuning,也叫做微调,是一种迁移学习技术,常用于于深度学习中。这种方法的基本思路是:首先,我们有一个预训练的模型,这个模型已经学会会了一些基本的模式和结构(比如在自然语言处理任务中,预训练模型可能已经学会了基本的语法和单词的语义)。然后,我们再在特定的任务数据上继续训练这个模型, 使其适应新的任务,这就是所谓的"fine-tuning"
9、H800,A800机器指的什么
答: H800,A800通常指英伟达(nvidia)专为大模型训练提供的GPU显卡的服务器。英伟达最开始推出面向全球AGI领域模型训练专用的GPU显卡,其中A100和H100是典型代表,但是后来美国出台了对华半导体出口限制新规,你们英伟达推出针对中国市场的特定版本的显卡,其中H800可理解为阉割版H100,A800是阉割版A100.
10、多模态大模型是什么
答: 通俗来讲,所谓的多模态大模型就是一种能够理解和处理多种类型的机器学习模型——而类型也被叫做模态,包括文本,图片,音频,视频等。与只能处理单一类型数据的单模态模型不同,多模态模型就像是一个全能的 “超级大脑”,可以同时接收并理解来自不同模态的信息
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。