DeepSeek火爆全网,职场人又一赚钱新赛道,现在入局还不晚!

春节前夕,DeepSeek-R1大模型横空出世

一夜之间火爆全网

与OpenAI相当的性能震惊硅谷

甚至引发了Meta内部的恐慌

堪称AI大模型领域的一场变革

近几年,随着AI技术的广泛应用

各行各业都将实现与AI技术的深度融合

市场对人工智能人才的需求将呈现井喷式增长

人工智能训练师”等新兴职业或产生大量缺口

不少企业开出高薪招聘相关人才

2025入局AI赛道正当时!

一、什么是“人工智能训练师”?

2020年,人工智能训练师这一新兴职业应运而生,并被正式纳入国家职业分类目录。

来源:中华人民共和国人力资源和社会保障部

来源:《中华人民共和国职业分类大典》

人工智能训练师,就是使用智能训练软件,在人工智能产品实际使用过程中进行数据库管理、算法参数设置、人机交互设计、性能测试跟踪及其他辅助作业的人员。

简单来说,他们的工作就是让人类能够“更懂”人类的各项需求,更好地为人类服务。

人工智能训练师职业等级为五级制,从五级到一级,逐级递进。证书全国通用,一证一码,终身有效,可在国家官方网站查询。

二、考人工智能训练师有补贴吗?

根据不同职业等级,深圳拟按相应标准对考取人工智能训练师的个人,给予1000-3000元的补贴。

来源:深圳市职业技能培训补贴目录

三、人工智能训练师证书含金量高吗?

1、对企业而言

(1)企业项目申报:拥有高级技能人才可用于投标加分和相关补贴项目的申请。

(2)人才体系建设:建立完善企业职工人才评价体系,岗位职级与国家职业技能等级的互认。

(3)人工智能企业评价认定要求:参评人工智能企业认定,未来可享受政府优惠扶持政策。

2、 对个人而言

(1)提升就业竞争力

持有人工智能训练师证书的个人,在求职时往往更受用人单位的青睐,因为证书证明了其专业技能和知识水平,可增强其就业竞争力。

(2)可助力职称评定

人工智能能训练师证书可以作为职称评定的依据,有助于职业发展和晋升。

(3)升职加薪

考下人工智能训练师证书,意味着你已经掌握了人工智能知识体系。这不仅有利于提升你的职场竞争力,也更容易获得升职加薪的机会。

四、人工智能训练师薪资水平如何?

智联招聘发布的2024第二季度《中国企业招聘薪酬报告》数据显示,按照职业划分,人工智能训练师训工程师高居榜首,平均招聘月薪为22003元, 从细分岗位来看,导航算法、深度学习、机器人算法、自然语言处理、机器学习等岗位高薪领跑。

来源:智联研究院

当前,优质的人工智能训练师相关人才紧缺,相关岗位薪资水涨船高,不少企业开出“天价”求才,部分岗位的薪资甚至能达到90W/年。

来源:BOSS直聘企业招聘信息

五、拿到人工智能训练师证书能从事什么工作?

1、 初级工:数据标注员、数据采集员

2、 中级工:数据标注工程师、数据审核员

3、 高级工:人工智能产品经理、人工智能售前工程师、人工智能项目管理、初级人工智能算法工程师

4、 技师:人工智能高级产品经理、人工智能方案工程师、中级人工智能算法工程师

5. 高级技师:人工智能高级产品经理、人工智能架构工程师、首席技术官(CTO)、高级人工智能算法工程师

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### DeepSeek-V3 API 全流程接入教程 #### 接入准备 在开始使用 DeepSeek-V3 前,需确认已具备如下条件: - 已完成平台账号注册并登录成功[^1]。 #### 创建API Key 进入用户后台管理系统,在左侧导航栏找到 **API Keys** 页面。页面内通过点击 **创建密钥** 按钮来生成唯识别码——API Key。此Key作为访问DeepSeek服务的核心认证依据,务必安全保管以防泄露风险[^2]。 #### 调用接口前的准备工作 获取API Key之后,下步就是按照官方文档指导设置请求头中的授权字段。通常情况下,这涉及到在网络请求中加入特定格式的身份验证参数,例如`Authorization: Bearer YOUR_API_KEY`这样的形式发送HTTP头部信息给服务器端进行权限校验。 #### 发起API请求实例 下面给出段Python代码片段展示如何利用requests库向DeepSeek发起次简单的GET方法调用: ```python import requests url = "https://api.deepseek.com/v3/endpoint" headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {your_api_key}' } response = requests.get(url, headers=headers) if response.status_code == 200: data = response.json() print(data) else: print(f"Error occurred with status code {response.status_code}") ``` 需要注意的是,虽然DeepSeek-V3提供了出色的性能表现以及较高的性价比优势,但在实际应用过程中也存在定的局限性,比如较大的推荐部署规模可能不适合资源有限的小型团队;不过好消息是未来随着技术进步这些问题都有望逐步改善[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值