在DeekSeek R1的论文中提到,通过蒸馏让QWen等模型获得了同等的效果。
那么,什么是蒸馏?
2014年,Geoffrey Hinton在 Distilling the Knowledge in a Neural Network 中提出知识蒸馏的概念:即将一个复杂的大模型(Teacher Network)上学习到的知识迁移到另一个更适合部署的小模型上(Student Network)。
小模型通过学习大模型的行为和知识,可以在保持小模型低计算量、高性能的同时,获得可以类比大模型的产出效果。
比如用DeepSeek蒸馏后的7B模型,DeepSeek-R1-Distill-Qwen-7B 在2024 年美国数学邀请赛(AIME)中首次答题正确率达到 55.5% ,超过了 QwQ-32B-Preview 模型。
蒸馏的几种常见方式
如何教?有几种方式:
-
Response-based distillation 基于输出的蒸馏;
-
Feature-based distillation 基于特征的蒸馏;
-
Relation-based distillation 基于关系的蒸馏。
基于输出的蒸馏
对于输入数据,教师模型输出了结果(可以是一个值,也可以是个概率分布),学生模型通过模仿这种概率分布来学习。
以下图的手写数字识别任务为例,教师模型给出了一个概率分布的结果(称之为软目标),即这张图是0-9的概率分别有多大。这样,学生模型就可以模仿教师模型的概率输出,从而让自己的行为更贴合教师模型。
和只给出最终答案“这张图是数字几”(硬目标)相比,概率分布给出了更多的信息量:以下图左为例,教师模型给出了图片挺像3;下图右,教师模型给出了图片是2,但也像7,这些额外的结果信息都能够让学生模型习得更多。
但是,这种基于输出结果的知识蒸馏,由于只利用了教师模型最终输出的知识,但是没有捕获过程思考,所以并不适合需要复杂决策和特征提取的任务。
基于关系的蒸馏
对于输入数据,教师模型给出了一系列样本的输出,学生模型需要学习教师模型输出之间的相对关系。
如上图所示,基于输出的蒸馏是点对点的,即学生模型用自己的结果1、2、3去分别拟合教师模型的结果1、2、3。
而基于关系的蒸馏是形对形的,学生模型自己的结果1、2、3彼此间的关联结构,去拟合教师模型的结果1、2、3的关联结构。
基于特征的蒸馏
对于任务,教师模型给出了某个中间层或多个中间层的内部特征供学生模型学习。
相较于基于输出的蒸馏,基于特征的蒸馏很显然向前推进了一个环节,给学生模型提供了更多的可参考信息。
如果教师模型和学生模型采用了相同和相似的架构,就更容易应用基于特征的蒸馏。
蒸馏 vs 微调 vs RAG
从概念上来看:
-
蒸馏是知识从教师模型→学生模型的迁移;
-
微调是模型在特定标注数据集上的早学习;
-
RAG(Retrieval Augmented Generation,检索增强生成)是大模型和信息检索系统的结合。
如果我们用 客服工作上岗过程 来打比方:
-
微调(自学成才),给出一本客服上岗SOP让新人自学,考试合格后上岗;
-
蒸馏(名师授课),资深的客服专家(教师模型)教课,不仅给出各种情况下该如何回复,还给出分析过程让新人理解的更深刻。
-
RAG(边干边学),给出一本产品手册,让新人基于产品手册的查询和自己的理解(模型已有的知识),来给用户反馈。
一个极端的情况,如果蒸馏过程中,教师模型只给出了硬目标(结果)来训练学生模型,不给出软目标(概率分布)或特征(过程值),那么这个蒸馏过程基本上和微调是类似的。
在读论文和资料的过程中,还发现有几个有意思的点:
1、微调大模型再蒸馏小模型 比 直接微调小模型的效果更好;
即,先让名师先琢磨透考试大纲再教给学生,比学生直接研究考试大纲的效果要好。
2、蒸馏 和 微调的效果取决于学生模型的聪明程度,聪明的模型可以学得更好。
同样以DeepSeek的蒸馏模型为例,32B的Qwen和70B的Llama表现相仿。
DeepSeek-R1-Distill-Qwen-32B 在 2024 年美国数学邀请赛(AIME)中首次答题正确率达到 72.6%,在 MATH - 500 测试中首次答题正确率达到 94.3%,显著超越了其他开源模型。
DeepSeek-R1-Distill-Llama-70B 在 2024 年美国数学邀请赛(AIME)中首次答题正确率达到 70.0%,在 MATH - 500 测试中首次答题正确率达到 94.5%,为密集型模型创造了新纪录。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。