「DeepSeek-V3 技术解析」:无辅助损失函数的负载均衡

1、技术背景

1.1 MoE (Mixture-of-Experts) in Transformers

MoE(Mixture-of-Experts,混合专家模型)在 Transformer 中的实现方式通常为:每隔若干 Transformer 层,将其中的 FFN(前馈网络)替换为多个 FFN(每个 FFN 充当一个"专家")。当 input token 进入该层时,通过门控操作(Gating)选择 Top-K 个专家,并将 input token 只路由至这些被选中的 FFN,从而仅激活对应的专家网络。

下图展示了这一过程:左侧标准 Transformer 层中的 FFN 子层被替换为右侧的 MoE 层。

image.png

图 1. Transformer 中的 MoE 层(红框内)示意图。图片改编自文献 [6]。

1.2 负载均衡及其重要性

在进行的餐厅类比中,我们通过一个能够提供多种菜系菜品的餐厅解释了 MoE 的概念:餐厅的每位厨师都是专家,主厨(Head Chef)的工作类似于门控操作,将每道菜品分配给具备对应技能的特定厨师。

为确保该系统高效运作,需满足以下条件:

  • 每位专业厨师必须精通自身菜系所需技能(例如饺子厨师必须会包饺子),同时所有厨师需能共同处理所有菜品。
  • 主厨需充分了解所有专业厨师的专长,并能高效分配订单。

在 MoE 中,前者对应 expert specialization 与 knowledge sharing 的权衡,后者则体现了负载均衡的重要性 —— 这也是本文的核心主题。

为何负载均衡如此重要?

原因在于,当负载不均衡发生时,MoE 无法有效运作。 最常见的问题是路由崩溃(Route Collapse):少数专家接收大部分 input token,而其他专家的利用率极低。

因此,大部分计算由超负荷工作的专家承担,而这些专家通常分布在多个 GPU 核心上,因此会导致硬件资源浪费。

由于梯度冲突(gradient conflict),路由奔溃也会导致训练不稳定。超负荷工作的专家接收更多 input token,他们积累的梯度也会更大,学习速度也会比工作负荷不足的专家快得多;因此,两者的梯度在幅值和方向上均可能发生偏离,导致训练难以收敛。

最后,MoE 中的负载不均衡也会导致性能低下和泛化效果不佳,因为工作负荷不足的专家会因为训练 tokens 不足,而难以学习有效知识。

由于负载均衡技术对 MoE 至关重要,因此研究者们针对这一问题提出了多种解决方案。其中,最常用的策略是为负载均衡添加辅助损失函数(Auxiliary Loss)和专家选择(Expert Choice)。

1.3 带辅助损失函数的负载均衡

一种常见的改善负载均衡的策略是在模型训练的目标函数基础上引入辅助损失函数。

image.png

图 2. 用于强化负载均衡的辅助损失函数示例。图片编辑自文献[5]。

上图展示了一个辅助损失函数的示例,其中

  • N 是专家数量,T 是 token 数量,K 是每个 input token 激活的专家数量。
  • s_{i, t} 是门控机制的输出,通过 Softmax 归一化到 [0, 1] 区间,表示第 t 个 token 选择第 i 个专家的概率。向量 u_t 是第 t 个 token 的输入隐藏状态,而 e_i 是第 i 个专家的“质心”,可以看作历史上路由到第 i 个专家的 token 嵌入平均值。因此,s_{i, t} 度量的是当前输入与第 i 位专家历史接收 token 的平均值的接近程度。
  • 因此,P_i 可视为整个输入序列选择第 i 个专家的平均概率。
  • f_i 表示被路由到第 i 个专家的 token 比例。

需要注意的是,f_i 是不可微分的,因此最小化上述损失函数实际上转化为了最小化 s_{i, t}。同时由于 f_i 依赖于 s_{i, t},对 s_{i, t} 的调整也会影响 f_i,从而实现对各专家负载分配的调节。

然而,用这种辅助损失函数来均衡负载需要付出一定代价,因为其梯度可能会干扰语言建模目标(language modeling objective)的梯度,导致模型性能下降,在极端不平衡情况下(工作负荷过大的专家的 f_i 和 P_i 都变得极大时)尤其明显。

因此,采用这种方法进行负载均衡需要谨慎设置辅助损失函数的权重。为更清晰地说明这一点,文献[5]的作者进行了一个实验,用不同 alpha 值训练模型,结果如下图所示,其中纵轴表示困惑度指标下的模型性能,横轴表示 MaxVio(衡量负载不平衡程度的指标,MaxVio 值越高表示负载越不平衡,i 表示第 i 个专家):

image.png

图 3. 辅助损失函数控制训练中负载均衡与模型性能的权衡困境。图片引自文献[5]。

如图所示,当 alpha 过小时(alpha=0),MaxVio 保持高位,说明辅助损失函数未能有效实现负载均衡目标。另一方面,当 alpha 过大时(alpha=0.01),模型最终会产生更高的困惑度。

综上,辅助损失函数控制的负载均衡是把双刃剑:若 alpha 未经仔细调校,可能损害模型性能。实际 LLM 训练中,由于资源限制,alpha 的调校过程充满挑战,这进一步增加了优化难度。

上图同时展示了本文提出的无损失函数方法在相同 Perplexity-MaxVio 坐标系下的表现,该方法同时实现了低困惑度和低 MaxVio,证明了无损失函数方法的有效性。

1.4 专家选择(Expert Choice)策略

在此需提及的另一项前期工作是 Expert Choice [7],它提出了一种简单高效的负载均衡方法,将路由策略从“token choice”切换为“expert choice”。

具体而言,MoE 路由中的门控分数通常通过对 affinity matrix(译者注:二维矩阵,用于量化 input token 与各个专家之间的匹配程度。)应用 Softmax 计算得出,如图 2 所示。传统路由方法从 token 维度应用 Softmax 为每个 token 选择专家,因此这些方法被称为“token choice”。问题在于,该机制下我们无法控制每个专家接收的 token 数量,最终导致负载不均衡问题。

而 Expert Choice 方法则从专家维度应用 Softmax,为每个专家选择被路由的 token。通过这种设计,每个专家接收的 token 数量能够天然达到完美均衡,因此无需依赖辅助损失函数实现负载均衡。在文献[7]中,这种方法同时展现出更优的模型性能和更快的训练速度。

然而,Expert Choice 这种方法也存在局限 —— 未来 token 泄露问题。由于每个专家需要先查看所有 token 的路由分数才能决定处理哪些 token,这违反了因果关系(causality),在文本生成、机器翻译等自回归任务中可能引发严重问题。

2、DeepSeek 的无辅助损失函数的负载均衡

为在不引入 gradient inference(译者注:此处或为作者笔误?应当为“gradient interference(梯度干扰)”,多个损失函数(或多个优化目标)的梯度方向发生冲突。) 的情况下解决负载均衡问题,DeepSeek 提出了一种名为" Loss-Free Balancing"的新技术,通过直接调整门控分数 s_{i,t} 实现。

如前文所述,当我们最小化图 2 所示的辅助损失函数时,最终会通过调整 s_{i,t} 来实现最小化 P_i。

因此,若能直接调整 s_{i,t},理论上应能达到与施加辅助损失函数相似的效果。

为此,我们在每个专家的门控分数上添加了专家层面的偏置项,如下图所示。需注意 b_i 并不用于最终门控分数的计算(后文也将说明该偏置项也是不可微分的),而是用于 TopK 选择专家时:

image.png

图 4. 在门控分数中引入偏置项 b_i。图片引自文献[5]

该偏置项 b_i 的计算方式非常直观,如下图所示:首先获取分配给各专家的 token 数量平均值及所有专家的理论全局均值,然后计算给各专家分配的 token 数量与理论全局均值的差值,偏置项由该差值(或误差)的符号乘以固定更新率(fixed update rate)决定(该更新率为可调超参数)。后续章节我们将对该超参数的影响进行更多实验分析。

image.png

图 5. DeepSeek 无损失函数的负载均衡算法。图片引自文献[5]

现可通过下表总结不同负载均衡方法的优势与局限:

image.png

图 6. 不同负载均衡方法对比。图片引自文献[5]

图 3 已展示该方法在模型性能与负载均衡间取得了更好的权衡,但仍有多方面需要验证。下一章节我们将深入分析实验结果。

3、Evaluation

有三个关键问题需要回答:

  • DeepSeek 所提出的方法能否在性能和负载均衡之间实现更好的权衡?
  • 图 5 中更新率 u 有什么影响?
  • 我们能否进一步优化偏置项更新规则(鉴于其如此之简单)?

3.1 性能 vs. 负载均衡

为回答第一个问题,作者在 1B 和 3B 模型上进行了实验,比较 loss-controlled 负载均衡和 loss-free 负载均衡的困惑度(Perplexity)和 MaxVio,结果如下图所示:

image.png

图 7. loss-controlled 负载均衡和 loss-free 负载均衡的对比。图片来自文献[5]。

上述结果与我们在图 3 中看到的结果类似:所提方法同时实现了更低的困惑度和更低的MaxVio。

除了评估最终的 checkpoint 外,作者还展示了训练过程中的 MaxVio 曲线,以便更全面地理解该方法在整个训练过程中的表现,如下图所示:

image.png

图 8. 训练过程中的 MaxVio 曲线。图片来自文献[5]。

如图中所示,在 1B 和 3B 的模型配置下,loss-free 方法在整个训练过程中都展现出更优的负载均衡能力,体现了该方法的稳定性。

3.2 超参数的影响(更新率)

如图 5 所示,所提方法引入了一个新的超参数 u(称为更新率(update rate)),该超参数如何影响 loss-free 方法的有效性?具体而言,我们需要理解 loss-free 方法对超参数 u 的取值是敏感还是不敏感,以及如何选择一个最优值来最大化该方法的效果。

如前文所述,在门控分数中添加偏置项的概念类似于绕过损失函数的反向传播,直接对门控分数进行梯度更新。在这种情况下,更新率 u 的作用与梯度更新中的步长(step size)类似。由此可推测其影响也相似:过小的更新率可能会导致收敛速度缓慢。过大的更新率可能导致不稳定和引发波动。

在原文中,作者对更新率进行了实验测试(取值从 1e-4 到 1e-2),结果如下图所示:

image.png

图 9. 更新率(update rate)对训练负载均衡的影响。图片来自文献[5]。

与预期一致,当 u 过小时(如 1e-4),MaxVio 下降速度较慢;而过大的 u(如 1e-2)则因波动性增强,导致训练过程中 MaxVio 持续偏高。

3.3 其他偏置项更新规则

为回答第三个问题,研究者尝试了多种备选策略,并将它们与 DeepSeek 提出的版本进行对比:

  • 策略变体 1:使用 e_i 的数值(而不仅仅是符号)计算偏置项,即从 b_i = b_i +u∗sign(e_i) 改为b_i = b_i +u∗e_i。
  • 策略变体 2:使用乘法偏置项而非加法偏置项。

其中策略变体 2 可以更正式地描述如下:

image.png

实验表明,策略变体 1 能带来略优的负载均衡效果,但未提升模型性能:

image.png

图 10. 策略变体 1 的性能表现。图片来自文献[5]。

而策略变体 2 甚至显示出略差的模型性能:

image.png

图 11. 策略变体 2 的性能表现。图片来自文献[5]。

以上所有结果均表明,最简单的策略反而是最佳选择。

4、Summary

在本文中,我们解释了 DeepSeek 模型的核心架构创新之一 —— DeepSeekMoE 中使用的无辅助损失函数的负载均衡方法。

本文首先介绍了混合专家模型(MoE)的基本原理,强调了负载均衡的重要性,并回顾了先前的解决方案(包括 auxiliary loss 方法和 Expert Choice 机制)。接着,本文阐释了 DeepSeek 的无损失函数的负载均衡方法及其性能表现。

DeepSeek 的无损失函数方法在保持因果关系的同时避免了引入梯度干扰,其有效性已通过原论文的实证结果得到验证。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值