【机器学习入门】1. 基础知识

《动手学深度学习》,第一章

1. 机器学习概述

人工智能、机器学习、深度学习的关系

机器学习的基本思路

  1. 把现实生活中的问题抽象成数学模型,并且清楚模型中不同参数的作用
  2. 利用数学方法对这个数学模型进行求解,从而解决现实生活中的问题
  3. 评估这个数学模型,是否真正的解决了现实生活中的问题,解决的效果如何

机器学习的基本步骤:

  1. 收集数据
  2. 数据准备
  3. 选择一个模型
  4. 训练
  5. 评估
  6. 参数调整
  7. 预测(开始使用)

2. 机器学习的关键组件

数据(data)

数据是机器学习的基石。

每个数据集由一个个样本(example)组成,样本有时也叫做数据点或者实例,通常每个样本由一组称为特征(features)的属性组成。模型会根据这些属性进行预测,要预测的是一个特殊的属性,它被称为标签(label)

当每个样本的特征类别数量都是相同的时候,其特征向量是固定长度的,这个长度被称为数据的维数(dimensionality)。并不是所有的数据都可以用“固定长度”的向量表示。

一般来说,数据越多,工作就越容易。更多的数据可以被用来训练出更强大的模型,从而减少对预先设想假设的依赖。

注意:仅仅拥有海量的数据是不够的,我们还需要正确的数据。如果数据中充满了错误,或者如果数据的特征不能预测任务目标,那么模型很可能无效。当数据不具有充分代表性,甚至包含了一些社会偏见时,模型就很有可能有偏见。

模型(model)

大多数机器学习会涉及到数据的转换。比如一个“输入照片并预测笑脸”的系统,再比如通过摄取到的一组传感器读数预测读数的正常与异常程度。

目标函数(objective function)

  • 损失函数(loss function):是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。
  • 代价函数(cost function):对每个单独的数据点计算损失函数,将所有损失函数的值取平均值的函数。

简单的理解:损失函数是针对单个样本的,而代价函数是针对所有样本的。

注意:有些书上,损失函数就是代价函数。

  • 目标函数(objective function):在机器学习中,我们需要定义模型的优劣程度的度量,这个度量在大多数情况是“可优化”的,就是目标函数。在模型训练过程中,我们想要损失值尽可能低,但是在训练集上的 low loss 不是唯一追求的目标。我们更关心的是模型的泛化能力,也就是在验证/测试集上的表现。为了避免模型对训练集的过拟合,我们通常会加一个**正则化项(regularization term)**来惩罚模型的复杂度,此时我们想要最小化的函数就变成了:
    E = C o s t ( f , D ) + R e g u l a r i z e r ( f ) E=Cost(f, D)+Regularizer(f) E=Cost(f,D)+Regularizer(f)

这里的 E 就是目标函数,是我们最终想要最小化的目标。这时代价函数作为目标函数中的一项,不一定能达到最小值(因为有正则化项约束)。当然,若不添加正则化项,则目标函数就等于代价函数。

算法(algorithm)

当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出最佳参数,以最小化损失函数。深度学习中,大多流行的优化算法通常基于一种基本方法:梯度下降(gradient descent)

简而言之,在每个步骤中,梯度下降法都会检查每个参数,看看如果仅对该参数进行少量变动,训练集损失会朝哪个方向移动。然后,它在可以减少损失的方向上优化参数。

3. 机器学习的类型

监督学习(supervised learning)

监督学习是指我们给算法一个数据集,并且给定正确答案,机器通过数据来学习正确答案的计算方法。也就是监督学习的数据是带有标签的
监督学习

监督学习

监督学习可以进一步分为两类问题:回归和分类。

1.回归(regression)

回归问题本质上是输出决定的,回归问题所使用的数据的标签是一个连续的数值。此时的目标是生成一个模型,使它的预测非常接近实际标签值。

生活中的许多问题都可归类为回归问题。比如预测用户对一部电影的评分、预测病人在医院的住院时间也是一个回归问题。

2. 分类(classification)

回归模型可以很好地解决“有多少”的问题,但是很多问题并非如此。例如,读取图片中的字符,并将其映射到对应的已知字符之上。这种“哪一个”的问题叫做分类问题。 分类问题希望模型能够预测样本属于哪个类别(class)。

例如,数字可能有10类,标签被设置为数字0~9。 最简单的分类问题是只有两类,这被称之为二项分类(binomial classification)。分类问题的标签是一个离散的值

回归是训练一个回归函数来输出一个数值;分类是训练一个分类器来输出预测的类别。

然而模型怎么判断得出这种“是”或“不是”的硬分类预测呢? 我们可以试着用概率语言来理解模型。 给定一个样本特征,模型为每个可能的类分配一个概率。比如猫狗分类例子中,分类器可能会输出图像是猫的概率为 0.9。 0.9这个数字表达的意思就是分类器认为90%图像中是一只猫的概率为 0.9。

无监督学习(unsupervised learning)

与监督学习相对,无监督学习的特点就是我们给算法的数据集,并没有标签。无监督学习的核心思想是通过对数据的统计特性和相似性进行分析,来发现数据中的潜在结构和模式。

无监督学习可以分为两类问题:聚类和降维。

  • 聚类:将数据分成不同的组或簇,使得同一组内的数据相似度高,不同组之间的相似度低。
  • 降维:将高维数据映射到低维空间,以减少特征维度和数据复杂性。

强化学习(reinforcement learning)

强化学习的特点是会与环境交互并采取行动。这可能包括应用到机器人、对话系统,甚至开发视频游戏的人工智能。

在强化学习问题中,智能体(agent)在一系列的时间步骤上与环境交互。在每个特定时间点,智能体从环境接收一些观察(observation),并且必须选择一个动作(action),然后通过某种机制(有时称为执行器)将其传输回环境,最后智能体从环境中获得奖励(reward)。此后新一轮循环开始,智能体接收后续观察,并选择后续操作,依此类推。

强化学习的目标是产生一个好的策略(policy)。 强化学习智能体选择的“动作”受策略控制,即一个从环境观察映射到行动的功能。

强化学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值