多校训练1 G Game of Swapping Numbers 贪心+数论

思路:题目要求 ∑ 1 ≤ i ≤ n ∣ A i − B i ∣ \sum_{\mathclap{1\le i\le n}} |A_{i}-B_{i}| 1inAiBi对换k次b数组元素后,形成的A, B数组会形成n对被减数与减数,最终要求的结果就等于这 n 对的相减之和。
进行被减数与减数的判断:a、b 两个数组内的 2n 个数存入 arr 数组中,以从小到大形式排列,以中间值 arr[cnt / 2] 进行划分,将 a 数组所有的被减数(大于arr[cnt / 2] 的元素)以原来的形式存入 c 数组中,充当减数的以其负数形式存入c数组中,b数组如是此操作存入d数组中。
①先考虑当 n = 2,k若为偶数相当于没变换,结果等于abs(a[1] - b[1])+ abs(a[2] - b[2]),k为奇数则结果等于abs(a[1] - b[2])+ abs(a[2] - b[1])。
②当 k >= n时,这时候一定可以进行被减数与减数的一一配对(k = n),多余的(n-k)操作可以用同为减数或同为被减数的a[ i ]、b[ i ]组合进行消耗。
③当 k < n时,只能进行有限的k次对换操作,且要将结果最大化,进行对换的 b[ i ]、b[ j ]选择满足 a[ i ]、b[ i ]同为被减数,和 a[ j ]、b[ j ]同为减数的两个组合,可以发现对换后,对结果的影响是可以计算的, Δ a n s = 2 ∗ ( m i n ( a i , b i ) − m a x ( a j , b j ) ) \varDelta ans = 2 * (min (ai, bi) - max(aj, bj)) Δans=2(min(ai,bi)max(aj,bj))为了结果最大,我们再用新数组 e 去存同为被减数的a[ i ]、b[ i ]中的较小值,进行从大到小顺序排列,f数组从同为减数的a[ i ]、b[ i ]中较大值,按从小到大顺序排列。for(int i = 1; i <= k; i++) ans = ans + 2 * abs(e[i] - f[i]);

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 5e5 + 10;
int a[maxn], b[maxn], arr[maxn<<1], c[maxn], d[maxn], e[maxn], f[maxn];
inline int abs(int a) { return (a >= 0) ? a : -a; }
#define max(a, b) (a > b) ? a : b
#define min(a, b) (a < b) ? a : b

int main()
{
    std::ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    int cnt = 1, n, k;
    ll ans = 0;
    scanf("%d %d", &n, &k);
    for(int i = 1; i <= n; i++)
    {
        scanf("%d", &a[i]);
        arr[cnt++] = a[i]; 
    }
    for(int i = 1; i <= n; i++)
    {
        scanf("%d", &b[i]);
        arr[cnt++] = b[i];
        ans = ans + 1ll * abs(a[i] - b[i]);
    }
    cnt--;
    if(n == 2)
    {
        if(k % 2 == 0)
        {
            cout<<ans<<endl;
        }
        else
        {
            ans = abs(a[1] - b[2]) + abs(a[2] - b[1]);
            cout<<ans<<endl; 
        }
        return 0;
    }

    sort(arr+1, arr+cnt+1, greater<int>());
    int sign = arr[cnt/2], ccnt = 0;
    for(int i = cnt/2; i > 0; i--)
    {
        if(sign == arr[i])
                ccnt++;
        if(arr[i] != sign)
                break;
    }
    for(int i = 1; i <= n; i++)
    {
        if(a[i] > sign)
            c[i] = a[i];
        else if(a[i] == sign && ccnt > 0)
        {
            c[i] = a[i];
            ccnt--;
        }
        else    c[i] = -a[i];
    }
    for(int i = 1; i <= n; i++)
    {
        if(b[i] > sign)
            d[i] = b[i];
        else if(b[i] == sign && ccnt > 0)
        {
            d[i] = b[i];
        }
        else d[i] = -b[i];
    }
    
    int fnt = 1, ent = 1;
    for(int i = 1; i <= n; i++)
    {
        if(a[i] == c[i] && b[i] == d[i])
            e[ent++] = min(a[i], b[i]);
        if(a[i] == -c[i] && b[i] == -d[i])
            f[fnt++] = max(a[i], b[i]);
    }
    ent--;
    fnt--;
    sort(e+1, e+ent+1, greater<int>());
    sort(f+1, f+fnt+1);
    
    int l = min(k, ent);
    for(int i = 1; i <= l; i++)
        ans = ans + 2ll * (e[i] - f[i]);
    cout<<ans<<endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值