MatLab使用显/隐式Adams求解ODE问题

代码:

function example_Adam
T = 1;
h = 0.1;
t = 0:h:T;
N = length(t)-1;
solu = exp(-5.0*t);
u0 = 1;
f = @f1;
u_euler = euler(f,u0,t,h,N);
u_out_Adams = out_Adams(f,u0,t,h,N);
u_in_Adams = in_Adams(f,u0,t,h,N);
 
figure (1)
plot(t,u_out_Adams,'*r',t,solu,t,u_in_Adams,'o');
legend('显示Adams外插','精确解','隐式Adams内插');
end
function u = euler(f,u0,t,h,N)
u    = zeros(N+1,1);
u(1) = u0;
for n = 1:N
    fn     = f(t(n),u(n));
    u(n+1) = u(n)+h*fn;
end end
function u = out_Adams(f, u0, t, h ,N)
u=zeros(N+1,1);
u(1)=u0;
u = euler(f,u0,t,h,4);
for n=4:N
    f1 = f(t(n),u(n));
    f2 = f(t(n-1),u(n-1));
    f3 = f(t(n-2),u(n-2));
    f4 = f(t(n-3),u(n-3));
    u(n+1) = u(n)+(h/24)*(55*f1-59*f2+37*f3-9*f4);
end
end
function u = in_Adams(f, u0, t, h ,N)
u    = zeros(N+1,1);
u(1) = u0;
u = euler(f,u0,t,h,3);
eps_in = 1e-6;
  K_in = 6;
for n = 3:N
    s1 = u(n);
    du = 1;
    k  = 1; 
    f2 = f(t(n),u(n));
    f3 = f(t(n-1),u(n-1));
    f4 = f(t(n-2),u(n-2));
    while abs(du)>eps_in && k<K_in
        f1 = f(t(n+1),s1);
        s2 = u(n)+(h/24)*(9*f1+19*f2-5*f3+f4);
        du = s2-s1;
        s1 = s2;
         k = k+1; end
    u(n+1) = s2;
end end
function f =f1(t,u)
f = -5*u;end

结果如下:(采取三种步长)

在h变小的过程中,显式Adams算法和隐式Adams算法的精度逐渐升高,接近于精确解。由上图可知隐式Adams法比显式Adams法的更精确,两种算法精度之间的差距随着步长h减小而逐渐减少,注意到在h=0.01时二者结果近乎重合。

  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
隐式Euler法是求解常微分方程初值问题的一种数值方法,其基本思想是通过迭代来逼近解的真实值。在Matlab,可以通过以下步骤使用隐式Euler法求解初值问题: 1. 定义常微分方程 首先需要定义待求解的常微分方程,比如y'=f(t,y),其t是自变量,y是因变量,f是关于t和y的函数。在Matlab,可以用函数句柄的形式表示常微分方程,比如: ```matlab function dydt = myode(t,y) % 定义常微分方程 dydt = -2*t*y; end ``` 2. 定义初始条件 隐式Euler法需要给出初始条件,即t0和y0。在Matlab,可以通过定义变量的形式给出初始条件,比如: ```matlab t0 = 0; y0 = 1; ``` 3. 定义迭代步长和迭代次数 隐式Euler法需要定义迭代步长和迭代次数,通常可以通过给定时间区间和步长来计算迭代次数,比如: ```matlab tspan = [0 1]; % 时间区间 h = 0.1; % 步长 N = (tspan(2)-tspan(1))/h; % 迭代次数 ``` 4. 定义隐式Euler法迭代公式 隐式Euler法的迭代公式为y(i+1) = y(i) + h*f(t(i+1),y(i+1)),其y(i+1)是待求解的因变量值,f(t(i+1),y(i+1))是常微分方程在t(i+1)和y(i+1)处的导数值,h是迭代步长。需要注意的是,由于y(i+1)出现在等式左右两侧,因此需要通过迭代来求解y(i+1)的值。在Matlab,可以通过定义匿名函数的形式表示隐式Euler法迭代公式,比如: ```matlab euler = @(t,y,y0,h,dydt) y - y0 - h*dydt(t+h,y); ``` 其,t和y是当前时间和因变量值,y0和h是初始条件和迭代步长,dydt是常微分方程的函数句柄。 5. 使用fsolve函数迭代求解 由于隐式Euler法需要通过迭代来求解y(i+1)的值,因此可以使用Matlab的fsolve函数来进行迭代求解。具体实现方式如下: ```matlab options = optimoptions('fsolve','Display','none'); [t,y] = deal(zeros(1,N+1)); % 初始化t和y t(1) = t0; y(1) = y0; % 给定初始条件 for i = 1:N dydt = myode(t(i),y(i)); % 计算dy/dt y(i+1) = fsolve(@(y) euler(t(i),y,y(i),h,dydt),y(i),options); % 迭代求解y(i+1) t(i+1) = t(i) + h; % 更新时间 end ``` 其,optimoptions函数用于设置fsolve的求解选项,deal函数用于初始化t和y。在每次迭代,需要先计算dy/dt的值,然后使用fsolve函数求解y(i+1)的值,并更新时间和因变量值。 以上就是使用隐式Euler法求解初值问题Matlab实现方法。需要注意的是,隐式Euler法通常比式Euler法精度更高,但也更加耗时。因此,在实际使用需要根据具体问题选择合适的数值方法。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值