这次又接到一个大模型岗位的面试。但是从面试过程来看,现在大模型岗位都要求有相关工作经验,还是太难进了。还是说国内公司早就过了培养人的年代了?
问到了哪些知识点:
开源大模型:项目里用的是浦语大模型,此外还了解chatglm,llama,qwen等等。
大模型微调的方法:lora。主要是lora了。
有没有对哪些参数做调整?调了lora的参数rank,还有其他参数可以调的吗?学习率?或者说只在某些层上加lora?
qlora是个什么东西,没有好好准备。q也许代表quantized?
其他微调的方法:当时脑袋短路,没想出来,事实上还有ptuning,prefix-tuning,adapter等等方案。
大模型部署:知道量化,比如8bit量化,原来模型参数是bf16类型,可以转换成int8类型;还有kv量化。其他不知道?需要再研究研究。
用了多少语料?是比赛方提供的还是自己制作的训练集?
大模型灾难性遗忘的问题:回答说我们主要是专用领域大模型,所以对通用问题用其他大模型回答;如果是一般的解决方案,专有数据:通用数据大概在1:10的量级。