大模型算法面试

前天面试了某外企公司的大模型算法岗,这次准备的很不充分,针对项目问的问题,也没有继续深挖下去。面试的问题已经忘了差不多了,现在赶紧补一下,能记一点记一点。

1.RAG里的文档切分怎么做?

我回答是按照段落去切分。自然段落太长了怎么办?上下文信息要不要包括进来?

2.你这里提到了bm25检索器,什么是bm25?。。。。这个没有继续研究

3.有没有用到embedding检索?具体是怎么做的?我回答是按照句子的关键词去查找。如果是一个问题,例如“为什么摩擦会生电”,怎么判断这个句子里的关键词呢?

4.如果你们用bm25检索,又用了embedding检索,最后检索出来多少条文本?会筛选几条文本?

5.筛选的过程排序怎么做?必须有一个打分模型。这个打分模型是什么样的?

这些问题还没有回答完全,等待补充。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值