傅里叶变换频域积分性质和频域卷积性质证明

傅里叶变换频域积分性质和频域卷积性质证明

    最近在学习信号与系统这门课程,其中的一个知识点就是傅里叶变换的性质,为了更好地记忆和使用这些性质,最好是知道这些性质的证明过程,而有些性质如频域积分和频域卷积定理的证明在书中并未给出,所以在此对这两条性质进行证明。

1. 频域积分性质的证明

首先想要证明频域积分性质,就要先了解时域积分性质的证明,时域积分性质证明的过程如下:

F { ∫ − ∞ t f ( τ ) d τ } = ∫ − ∞ ∞ { ∫ − ∞ t f ( τ ) d τ } e − j w t d t = ∫ − ∞ ∞ { ∫ − ∞ ∞ f ( τ ) ϵ ( t − τ ) d τ } e − j w t d t \mathcal{F}\{ \int_{ - \infty }^{ t } f(\tau)d_\tau\}=\int_{-\infty}^{\infty}\{ \int_{-\infty}^t f(\tau) d_\tau\}e^{-jwt} d_t \\ =\int_{-\infty}^{\infty}\{\int_{-\infty}^{\infty}f(\tau)\epsilon(t-\tau) d_\tau \}e^{-jwt} d_t F{tf(τ)dτ}={tf(τ)dτ}ejwtdt={f(τ)ϵ(tτ)dτ}ejwtdt
经观察发现可以先将阶跃函数 ϵ ( t − τ ) \epsilon(t-\tau) ϵ(tτ)进行傅里叶变化变成 [ π δ ( w ) + 1 j w ] e − j w τ [\pi \delta(w)+\frac{1}{jw}]e^{-jw\tau} [πδ(w)+jw1]ejwτ
∫ − ∞ ∞ f ( τ ) { ∫ − ∞ ∞ ϵ ( t − τ ) e − j w t d t } d τ = ∫ − ∞ ∞ f ( τ ) π δ ( w ) e − j w τ d τ + ∫ − ∞ ∞ f ( τ ) ⋅ 1 j w e − j w τ d τ = π F ( 0 ) δ ( w ) + 1 j w F ( j w ) \int_{-\infty}^{\infty}f(\tau)\{\int_{-\infty}^{\infty}\epsilon(t-\tau)e^{-jwt}d_t\}d_\tau\\=\int_{-\infty}^{\infty}f(\tau)\pi \delta (w)e^{-jw\tau}d_\tau+\int_{-\infty}^{\infty}f(\tau)\cdot \frac{1}{jw}e^{-jw\tau}d_\tau\\=\pi F(0)\delta(w)+\frac{1}{jw}F(jw) f(τ){ϵ(tτ)ejwtdt}dτ=f(τ)πδ(w)ejwτdτ+f(τ)jw1ejwτdτ=πF(0)δ(w)+jw1F(jw)
综上时域积分性质可以表示为:若 f ( t )    ⟺    F ( j w ) f(t) \iff F(jw) f(t)F(jw),则
∫ − ∞ t f ( τ ) d τ    ⟺    π F ( 0 ) δ ( w ) + 1 j w F ( j w ) \int_{-\infty}^tf(\tau)d\tau \iff \pi F(0) \delta(w)+\frac{1}{jw}F(jw) tf(τ)dτπF(0)δ(w)+jw1F(jw)

从上述时域积分性质的证明中可以看出首先需要改变积分上限,然后变换积分次序,最后按照一般的傅里叶变换即可

这样的证明过程可以沿用到频域积分上,频域积分性质证明如下:
F − 1 { ∫ − ∞ w F ( j Ω ) d Ω } = 1 2 π ∫ − ∞ ∞ { ∫ − ∞ w F ( j Ω ) d Ω } e j w t d w = 1 2 π ∫ − ∞ ∞ { ∫ − ∞ ∞ F ( j Ω ) ϵ ( w − Ω ) d Ω } e j w t d w = ∫ − ∞ ∞ F ( j Ω ) { 1 2 π ∫ − ∞ ∞ ϵ ( w − Ω ) e j w t d w } d Ω = 1 2 π ( ∫ − ∞ ∞ F ( j Ω ) π δ ( t ) e j Ω t d Ω + ∫ − ∞ ∞ F ( j Ω ) ⋅ j t e j Ω t d Ω ) = π f ( 0 ) δ ( t ) + j t f ( t ) \mathcal{F^{-1}}\{ \int_{ - \infty }^{ w } F(j\Omega)d_\Omega\}=\frac{1}{2\pi}\int_{-\infty}^{\infty}\{ \int_{-\infty}^w F(j\Omega) d_\Omega\}e^{jwt} d_w \\ =\frac{1}{2\pi}\int_{-\infty}^{\infty}\{\int_{-\infty}^{\infty}F(j\Omega) \epsilon(w-\Omega) d_\Omega \}e^{jwt} d_w\\=\int_{-\infty}^{\infty}F(j\Omega)\{\frac{1}{2\pi}\int_{-\infty}^{\infty}\epsilon(w-\Omega)e^{jwt}d_w\}d_\Omega\\=\frac{1}{2\pi}(\int_{-\infty}^{\infty}F(j\Omega)\pi \delta (t)e^{j\Omega t}d_\Omega+\int_{-\infty}^{\infty}F(j\Omega)\cdot \frac{j}{t}e^{j\Omega t}d_\Omega)\\=\pi f(0)\delta(t)+\frac{j}{t}f(t) F1{wF(jΩ)dΩ}=2π1{wF(jΩ)dΩ}ejwtdw=2π1{F(jΩ)ϵ(wΩ)dΩ}ejwtdw=F(jΩ){2π1ϵ(wΩ)ejwtdw}dΩ=2π1(F(jΩ)πδ(t)ejΩtdΩ+F(jΩ)tjejΩtdΩ)=πf(0)δ(t)+tjf(t)
综上频域积分性质可以表示为:若 F ( j w )    ⟺    f ( t ) F(jw) \iff f(t) F(jw)f(t),则
∫ − ∞ w F ( j Ω ) d Ω    ⟺    π f ( 0 ) δ ( t ) + j t f ( t ) \int_{-\infty}^wF(j\Omega)d\Omega \iff \pi f(0) \delta(t)+\frac{j}{t}f(t) wF(jΩ)dΩπf(0)δ(t)+tjf(t)
在以上证明过程中使用到了傅里叶变化的对称特性和移频特性
ϵ ( t )    ⟺    π δ ( w ) + 1 j w \epsilon(t) \iff \pi \delta(w)+\frac{1}{jw} ϵ(t)πδ(w)+jw1
对 称 特 性 : ϵ ( w )    ⟺    1 2 π ( π δ ( − t ) + 1 − j t ) = 1 2 π ( π δ ( t ) + j t ) 对称特性:\epsilon(w) \iff \frac{1}{2\pi} (\pi \delta(-t)+\frac{1}{-jt})=\frac{1}{2\pi} (\pi \delta(t)+\frac{j}{t}) ϵ(w)2π1(πδ(t)+jt1)=2π1(πδ(t)+tj)
移 频 特 性 : ϵ ( w − Ω )    ⟺    1 2 π ( π δ ( t ) + j t ) e j Ω t 移频特性:\epsilon(w-\Omega) \iff \frac{1}{2\pi} (\pi \delta(t)+\frac{j}{t})e^{j\Omega t} ϵ(wΩ)2π1(πδ(t)+tj)ejΩt



2. 频域卷积性质的证明

首先还是先给出时域卷积性质的证明:
F { f 1 ( t ) ∗ f 2 ( t ) } = ∫ − ∞ ∞ { ∫ − ∞ ∞ f 1 ( τ ) f 2 ( t − τ ) d τ } e − j w t d t \mathcal{F}\{f_1(t)*f_2(t)\}=\int_{-\infty}^{\infty}\{ \int_{-\infty}^{\infty} f_1(\tau)f_2(t-\tau) d_\tau\}e^{-jwt} d_t F{f1(t)f2(t)}={f1(τ)f2(tτ)dτ}ejwtdt
变换积分次序
F { f 1 ( t ) ∗ f 2 ( t ) } = ∫ − ∞ ∞ f 1 ( τ ) { ∫ − ∞ ∞ f 2 ( t − τ ) e − j w t d t } d τ \mathcal{F}\{f_1(t)*f_2(t)\}=\int_{-\infty}^{\infty} f_1(\tau)\{ \int_{-\infty}^{\infty}f_2(t-\tau) e^{-jwt}d_t\} d_\tau F{f1(t)f2(t)}=f1(τ){f2(tτ)ejwtdt}dτ
因为   f 2 ( t − τ )    ⟺    F 2 ( w ) e − j w τ f_2(t-\tau) \iff F_2(w)e^{-jw\tau} f2(tτ)F2(w)ejwτ
F { f 1 ( t ) ∗ f 2 ( t ) } = ∫ − ∞ ∞ f 1 ( τ ) F 2 ( j w ) e − j w τ d τ = F 1 ( j w ) F 2 ( j w ) \mathcal{F}\{f_1(t)*f_2(t)\}=\int_{-\infty}^{\infty}f_1(\tau)F_2(jw)e^{-jw\tau}d_\tau = F_1(jw)F_2(jw) F{f1(t)f2(t)}=f1(τ)F2(jw)ejwτdτ=F1(jw)F2(jw)
所以可得性质: f 1 ( t ) ∗ f 2 ( t )    ⟺    F 1 ( j w ) F 2 ( j w ) f_1(t)*f_2(t) \iff F_1(jw)F_2(jw) f1(t)f2(t)F1(jw)F2(jw)


模仿时域卷积定理的证明过程可得频域卷积定理的证明过程:
F − 1 { F 1 ( j w ) ∗ F 2 ( j w ) } = 1 2 π ∫ − ∞ ∞ { ∫ − ∞ ∞ F 1 ( j Ω ) ⋅ F 2 ( j ( w − Ω ) ) d Ω } e j w t d w = ∫ − ∞ ∞ F 1 ( j Ω ) { 1 2 π ∫ − ∞ ∞ F 2 ( j ( w − Ω ) ) e j w t d w } d Ω = ∫ − ∞ ∞ F 1 ( j Ω ) f 2 ( t ) e j Ω t d Ω = 2 π ( 1 2 π ∫ − ∞ ∞ F 1 ( j Ω ) e j Ω t f 2 ( t ) d Ω ) = 2 π f 1 ( t ) f 2 ( t ) \mathcal{F^{-1}}\{ F_1(jw)*F_2(jw)\}=\frac{1}{2\pi}\int_{-\infty}^{\infty}\{ \int_{-\infty}^{\infty} F_1(j\Omega)\cdot F_2(j(w-\Omega)) d_\Omega\}e^{jwt} d_w \\ =\int_{-\infty}^{\infty}F_1(j\Omega)\{\frac{1}{2\pi}\int_{-\infty}^{\infty} F_2(j(w-\Omega))e^{jwt} d_w \}d_\Omega\\=\int_{-\infty}^{\infty}F_1(j\Omega)f_2(t)e^{j\Omega t}d_\Omega\\={2\pi}(\frac{1}{2\pi}\int_{-\infty}^{\infty}F_1(j\Omega)e^{j\Omega t}f_2(t)d_\Omega)\\=2\pi f_1(t)f_2(t) F1{F1(jw)F2(jw)}=2π1{F1(jΩ)F2(j(wΩ))dΩ}ejwtdw=F1(jΩ){2π1F2(j(wΩ))ejwtdw}dΩ=F1(jΩ)f2(t)ejΩtdΩ=2π(2π1F1(jΩ)ejΩtf2(t)dΩ)=2πf1(t)f2(t)
所以可得频域卷积的性质: 1 2 π f 1 ( t ) f 2 ( t )    ⟺    F 1 ( j w ) F 2 ( j w ) \frac{1}{2\pi}f_1(t)f_2(t) \iff F_1(jw)F_2(jw) 2π1f1(t)f2(t)F1(jw)F2(jw)


    傅里叶变换中频域积分和频域卷积的性质已经证明完毕,如果有错误的地方,还请指正。
  • 25
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值