傅里叶变换的性质---积分特性

本文讨论了傅里叶变换在时域和频域的积分特性,并重点介绍了如何将公式(1)进行化简的过程。
摘要由CSDN通过智能技术生成

若傅里叶变换

\mathcal{F}\left [ f(t) \right ]=F(\omega )

则时域积分特性如下:

\mathcal{F}\left [ \int_{-\infty }^{t} f(\tau )d\tau \right ]=\frac{F(\omega )}{j\omega }+\pi F(0)\delta (\omega )\; \; \; \; \; (1)

如果F(0)=0,(1)式化简为

\mathcal{F}\left [ \int_{-\infty }^{t} f(\tau )d\tau \right ]=\frac{F(\omega )}{j\omega }\; \; \; \; \; (2)

频域积分特性如下:

\mathcal{F}^{-1}\left [ \int_{-\infty }^{\omega }F(\Omega ) d\Omega \right ]

=-\frac{f(t)}{jt}+\pi f(0)\delta (t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值