傅里叶变换的性质及证明

傅里叶变换的性质及证明

1. 线性性质 F [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( ω ) + β F 2 ( ω ) \qquad F[\alpha f_1(t)+\beta f_2(t)]=\alpha F_1(\omega)+\beta F_2(\omega) F[αf1(t)+βf2(t)]=αF1(ω)+βF2(ω)

证明:

F [ α f 1 ( t ) + β f 2 ( t ) ] = ∫ − ∞ + ∞ [ α f 1 ( t ) + β f 2 ( t ) ] e − j w t d t = α ∫ − ∞ + ∞ f 1 ( t ) e − j w t d t + β ∫ − ∞ + ∞ f 2 ( t ) e − j w t = α F 1 ( ω ) + β F 2 ( ω ) ( 证 毕 ) \begin{aligned} F[\alpha f_1(t)+\beta f_2(t)] &=\int_{-\infty}^{+\infty}[\alpha f_1(t)+\beta f_2(t)]e^{-jwt}dt\\ &=\alpha \int_{-\infty}^{+\infty}f_1(t)e^{-jwt}dt + \beta \int_{-\infty}^{+\infty}f_2(t)e^{-jwt}\\ &=\alpha F_1(\omega)+\beta F_2(\omega)\\ & (证毕) \end{aligned} F[αf1(t)+βf2(t)]=+[αf1(t)+βf2(t)]ejwtdt=α+f1(t)ejwtdt+β+f2(t)ejwt=αF1(ω)+βF2(ω)()

2. 位移性质 F [ f ( t ± t 0 ) ] = e ± j w t 0 F ( ω ) \qquad F[f(t\pm t_0)]=e^{\pm jwt_0}F(\omega) F[f(t±t0)]=e±jwt0F(ω)

证明:

F [ f ( t ± t 0 ) ] = ∫ − ∞ + ∞ f ( t ± t 0 ) e − j w t d t ( 令 u = t ± t 0 ) = ∫ − ∞ + ∞ f ( u ) e − j w ( u ∓ t 0 ) d u = e ± j w t 0 ∫ − ∞ + ∞ f ( u ) e − j w u d u = e ± j w t 0 F ( ω ) ( 证 毕 ) \begin{aligned} F[f(t\pm t_0)] &=\int_{-\infty}^{+\infty}f(t\pm t_0)e^{-jwt}dt\qquad(令u=t\pm t_0)\\ &=\int_{-\infty}^{+\infty}f(u)e^{-jw(u\mp t_0)}du\\ &=e^{\pm jwt_0}\int_{-\infty}^{+\infty}f(u)e^{-jwu}du\\ &=e^{\pm jwt_0}F(\omega)\\ & (证毕) \end{aligned} F[f(t±t0)]=+f(t±t0)ejwtdt(u=t±t0)=+f(u)ejw(ut0)du=e±jwt0+f(u)ejwudu=e±jwt0F(ω)()

3. 对称性质 F [ f ( − t ) ] = F ( − ω ) \qquad F[f(-t)]=F(-\omega) F[f(t)]=F(ω)

证明:

F [ f ( − t ) ] = ∫ − ∞ + ∞ f ( − t ) e − j w t d t ( 令 u = − t ) = ∫ + ∞ − ∞ f ( u ) e − j w ( − u ) d ( − u ) = ∫ − ∞ + ∞ f ( u ) e − j ( − w ) t d u = F ( − ω ) ( 证 毕 ) \begin{aligned} F[f(-t)] &=\int_{-\infty}^{+\infty}f(-t)e^{-jwt}dt\qquad(令u=-t)\\ &=\int_{+\infty}^{-\infty}f(u)e^{-jw(-u)}d(-u)\\ &=\int_{-\infty}^{+\infty}f(u)e^{-j(-w)t}du\\ &=F(-\omega)\\ & (证毕) \end{aligned} F[f(t)]=+f(t)ejwtdt(u=t)=+f(u)ejw(u)d(u)=+f(u)ej(w)tdu=F(ω)()

4. 尺度性质 F [ f ( a t ) ] = 1 ∣ a ∣ F ( ω a ) ( a ≠ 0 ) \qquad F[f(at)]=\frac{1}{|a|}F(\frac{\omega}{a})\qquad(a\neq0) F[f(at)]=a1F(aω)(a=0)

证明:

F [ f ( a t ) ] = ∫ − ∞ + ∞ f ( a t ) e − j w t d t ( 令 u = a t ) = { ∫ − ∞ + ∞ f ( u ) e − j w u a d u a , a > 0 ∫ + ∞ − ∞ f ( u ) e − j w u a d u a , a < 0 ( 注 意 上 下 限 ) = 1 ∣ a ∣ ∫ − ∞ + ∞ f ( u ) e − j w a u d a = 1 ∣ a ∣ F ( ω a ) ( a ≠ 0 ) ( 证 毕 ) \begin{aligned} F[f(at)] &= \int_{-\infty}^{+\infty}f(at)e^{-jwt}dt\qquad(令u=at)\\ &= \begin{cases} \int_{-\infty}^{+\infty}f(u)e^{-jw\frac{u}{a}}d\frac{u}{a} & ,a>0\\ \int_{+\infty}^{-\infty}f(u)e^{-jw\frac{u}{a}}d\frac{u}{a} & ,a<0\\ \end{cases}\qquad{(注意上下限)}\\ &=\frac{1}{|a|}\int_{-\infty}^{+\infty}f(u)e^{-j\frac{w}{a}u}da\\ &=\frac{1}{|a|}F(\frac{\omega}{a})\qquad(a\neq0)\\ & (证毕) \end{aligned} F[f(at)]=+f(at)ejwtdt(u=at)={+f(u)ejwaudau+f(u)ejwaudau,a>0,a<0()=a1+f(u)ejawuda=a1F(aω)(a=0)()

5. 微分性质 F [ f ′ ( t ) ] = j w F ( ω ) \qquad F[f'(t)]=jwF(\omega) F[f(t)]=jwF(ω)

证明:

前提:f(x)在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上连续或只有有限个可去间断点,且 lim ⁡ x → ∞ f ( x ) = 0 \lim\limits_{x\rightarrow\infty} f(x)=0 xlimf(x)=0
F [ f ′ ( t ) ] = ∫ − ∞ + ∞ f ′ ( t ) e − j w t d t = ∫ − ∞ + ∞ e − j w t d f ( t ) = 0 − ( − j w ) ∫ − ∞ + ∞ e − j w t d t = j w F ( ω ) ( 证 毕 ) \begin{aligned} F[f'(t)] &=\int_{-\infty}^{+\infty}f'(t)e^{-jwt}dt\\ &=\int_{-\infty}^{+\infty}e^{-jwt}df(t)\\ &=0-(-jw)\int_{-\infty}^{+\infty}e^{-jwt}dt\\ &=jwF(\omega)\\ & (证毕) \end{aligned} F[f(t)]=+f(t)ejwtdt=+ejwtdf(t)=0(jw)+ejwtdt=jwF(ω)()

用数学归纳法易证:当 lim ⁡ x → ∞ f ( k ) ( x ) = 0   ( k = 0 , 1 , … , n − 1 ) 时 , \lim\limits_{x\rightarrow\infty}f^{(k)}(x)=0\ (k=0,1,\dots,n-1)时, xlimf(k)(x)=0 (k=0,1,,n1),
F [ f ( n ) ( t ) ] = ( j w ) n F ( ω ) F[f^{(n)}(t)]=(jw)^nF(\omega) F[f(n)(t)]=(jw)nF(ω)

6. 积分性质 F [ ∫ − ∞ t f ( t ) d t ] = 1 j w F ( ω ) \qquad F[\int_{-\infty}^{t}f(t)dt]=\frac{1}{jw}F(\omega) F[tf(t)dt]=jw1F(ω)

证明:

前提: lim ⁡ t → + ∞ ∫ − ∞ t f ( t ) d t = 0 \lim\limits_{t\rightarrow+\infty}\int_{-\infty}^{t}f(t)dt=0 t+limtf(t)dt=0

令 g ( t ) = ∫ − ∞ t f ( t ) d t , 有 lim ⁡ t → ∞ g ( t ) = 0 \qquad令g(t)=\int_{-\infty}^{t}f(t)dt,\qquad 有\lim\limits_{t\rightarrow\infty}g(t)=0 g(t)=tf(t)dt,tlimg(t)=0
∴ F [ g ′ ( t ) ] = j w F [ g ( t ) ] ∵ g ′ ( t ) = f ( t ) ∴ F [ f ( t ) ] = 1 j w F [ g ( t ) ] ( 证 毕 ) \begin{aligned} & \therefore F[g'(t)]=jwF[g(t)]\\ & \because g'(t)=f(t)\\ & \therefore F[f(t)]=\frac{1}{jw}F[g(t)]\\ & (证毕) \end{aligned} F[g(t)]=jwF[g(t)]g(t)=f(t)F[f(t)]=jw1F[g(t)]()

7. 卷积性质 F [ f ∗ g ] = F ( f ) ⋅ F ( g ) \qquad F[f*g]=F(f)\cdot F(g) F[fg]=F(f)F(g)

证明:

F [ f ∗ g ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( t ) g ( τ − t ) d t   e − j w τ d τ = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( t ) g ( τ − t ) e − j w ( τ − t ) d τ   e − j w t d t ( 令 u = τ − t ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( t ) g ( u ) e − j w u d u   e − j w t d t = ∫ − ∞ + ∞ f ( t ) e − j w t d t ∫ − ∞ + ∞ g ( u ) e − j w u d u = F ( f ) ⋅ F ( g ) ( 证 毕 ) \begin{aligned} F[f*g] &=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(t)g(\tau-t)dt\ e^{-jw\tau}d\tau \\ &=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(t)g(\tau-t)e^{-jw(\tau-t)}d\tau\ e^{-jwt}dt\qquad(令u=\tau-t)\\ &=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(t)g(u)e^{-jwu}du\ e^{-jwt}dt\\ &=\int_{-\infty}^{+\infty}f(t)e^{-jwt}dt\int_{-\infty}^{+\infty}g(u)e^{-jwu}du\\ &=F(f)\cdot F(g)\\ & (证毕) \end{aligned} F[fg]=++f(t)g(τt)dt ejwτdτ=++f(t)g(τt)ejw(τt)dτ ejwtdt(u=τt)=++f(t)g(u)ejwudu ejwtdt=+f(t)ejwtdt+g(u)ejwudu=F(f)F(g)()

  • 18
    点赞
  • 105
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值